Annals of Agric. Sci., Moshtohor Vol. 59(4) (2021), 1077 – 1082

Bio and mineral-N fertilization of Sunflower (*Helianthus annuus* L.) Grown on Sandy Soil Using ¹⁵N Technique

🗸 iThenticate

SCREENED BY

M. A. Hekal¹, A. A. Abdel-Salam², S. M. Soliman¹, Y. G. M. Galal¹, A. A. Moursy¹ and W. R. Zahra² ¹Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Egypt. ² Soil and Water Department, Faculty of Agriculture, Moshtohor, Benha University, Egypt. Corresponding authors: Mohamed 070806@fagr.bu.edu.eg

Abstract

Biofertilization using *Azotobacter chroococcum* (B₁), *Azospirillum brasilense* (B₂) and *Bacillus megaterium* (B₃), were assessed vs. Mineral-N fertilization using ammonium sulphate with 2% ¹⁵N atom excess on sunflower grown on a virgin sand during 2014 summer season. Plants grew for 45 days. The highest plant height (64.87 cm) with an increase about 93.6% over the non-fertilized was given by the *Azospirillum* bacteria combined with the high N rate (N₃B₂). Total chlorophyll ranged from 17.8% by (N₂B₁) to 34.9% by (N₃B₀). The highest dry matter yield of 44.20 kg ha⁻¹ was by N₃B₀. The highest N uptake was given by plants receiving high N without biofertilization (N₃B₀) with an increase 141.4%. The highest fertilizer N recovery of 18.45% was by high N without biofertilization (N₃B₀) with an increase 99.7%.

Keywords: N and Biofertilization, Fertilizer N recovery, ¹⁵N-Isotope dilution, Sunflower.

Introduction

Sunflower (*Helianthus annuus L.*) is an important edible vegetable oil that ranks the fourth after soybean, palm oil and canola as a source of edible oil in the world (USDA 2008). In Egypt, the cultivated area of sunflower is limited in Nile Valley and the delta due to the competition with other strategic summer crops. However, it could be cultivated on newly reclaimed soils in the desert area, which represents 96% of Egypt total area (El-Sayed, 2012).

Biofertilizers are organic products containing specific micro-organisms in concentrated forms, derived from the soil root zone (Rhizosphere) (Mishra and Dadhich, 2010). They are considered as an important environment friendly sustainable agricultural practices, with low cost inputs; mainly including nitrogen fixing bacteria (Azotobacter sp, Azospirillum sp etc.) and phosphate solubilizing bacteria (Bacillus megtherium) (Sharma and Namdeo, 1999). The beneficial effect of biofertilizers inoculation on sunflower has been reported by several investigators. The obtained results by Keshta and El-Kholy (1994) indicated that the application of biofertilizers as a source of N₂ fixing bacteria on sunflower increased plant height, total chlorophyll, dry matter yield and N uptake.

Nitrogen is one of the most important nutrients to plant growth (Li et al., 2015). Plant need huge amount of nitrogen to form protein and nucleic acids. Usually N is consumed and supplied in the chemical form (Mohamed, 2003). The effect of mineral and organic fertilizers on sunflower was widely investigated (Diacono et al., 2013 and Obour et al., 2017).

Osman and Awed (2010) in their study on sunflower showed that, increasing nitrogen level from 72 kg to 144 kg N ha⁻¹ significantly increased all yield components.

This work aimed at tracing the contribution of bacterial inoculants and N fertilization rates on sunflower plants grown on poor fertile sand soil to recognize the best management combinations.

Materials and Methods

A field experiment to assess biofertilization and mineral fertilization on Sunflower (Helianthus annuus L.) was conducted at the Experimental Field of Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Abu-Zaable, Egypt during 2014 under drip irrigation system. The soil was sand. A randomized complete block design was used in the experiment with two factors. Factor N fertilization (N): with 4 treatments: unfertilized (N₀),105 kg N ha⁻¹ (N₁), 140 kg N ha⁻¹ (N₂) and 175 kg N ha⁻¹ (N₃). Factor biofertilization (B): with 4 treatments: non-fertilized (B₀), fertilization with Azotobacter chroococcum (B_1) , fertilization with Azospirillum brasilense (B₂) and fertilization with **Bacillus megaterium** (B_3), where B_1 and B_2 being free-living N₂-fixers and B₃ a P-dissolver ; each inoculum obtained from Agriculture Research Center, Giza, Egypt and was mounted on a peat moss carrier. A saccharide solution was used as a material for sticking the inoculants on seed surface three hours before seeding. Seeding was in rows (63 cm apart) with two seeds per hill 30 cm between hills. The plot area was 10 m² (1.25 m× 8.0 m). The crop exhibited no sign of insect or pest attack or disease incidence; therefore, no protection measures were applied. Compost provided by the Faculty of Agriculture, Moshtohor was used as a basal treatment (21 Mg ha⁻¹) for the experimental field before cultivation (45 days before cultivation). Compost properties are presented in Table 1. Compost analyses were done according to methods cited by Carter and Gregorish (2008).

	The state of the 								
Ν	Nutrients 'mgkg-1', organic matter, ash, moisture (g kg-1), pH, EC and C/N ratio of compost								
Ν	Р	K	Fe	Mn	Zn	Cu			
21.0	10.3	21.1	4.1	0.5	0.3	0.2			
\mathbf{Ph}	EC (1:2.5)	Organic matter	Ash	Organic carbon	C/N ratio	Moisture			
(1:2.5)	(dS m ⁻¹)		g kg ⁻¹		_	(g kg)			
7.4	5.2	643	332	207.0	9.9	22.6			

allowed 45 days growth (i.e. to May 29th, 2014).

Seeds were sown on April 15th, 2014 and plants were

Nutrients 'mgkg-1', organic matter, ash, moisture (g kg-1), pH, EC and C/N ratio of compost								
Ν	Р	K	Fe	Mn	Zn	Cu		
21.0	10.3	21.1	4.1	0.5	0.3	0.2		
\mathbf{Ph}	EC (1:2.5)	Organic matter	Ash	Organic carbon	C/N ratio	Moisture		
(1.2.3)	(dS m ⁻¹)		g kg ⁻¹			(g kg)		
74	52	643	332	207.0	99	22.6		

Table 1. Main properties of organic compost used in the study.

A micro-plot was allocated where ¹⁵N ammonium sulphate with 2% 15N atom excess was used for ¹⁵N isotope assessment. All plots received P, K and micronutrients as recommended by bulletin of the Ministry of Agriculture and Reclamation. N (as ammonium sulphate, 207 g N kg⁻¹) was applied in two equal splits (2 and 4 weeks after sowing).P was at 24 kg P ha⁻¹ (as Ca-superphosphate, 68 g P kg⁻¹) during soil preparations, while K was at 25 kg K ha⁻¹ (as Ksulphate, 415 g K kg⁻¹) 4 weeks after sowing. Soil properties (Table 2) were determined according to Carter and Gregorich (2008). Fertilizer N recovery (FNR) was calculated as follows:

 $FNR = \{kg N ha^{-1} derived from fertilizer \div kg\}$ N ha⁻¹ fertilizer rate} x 100

Table 2. Main properties of soil of the experiment.

pН	EC*	CaCO ₃		Organio	e matter			
(1:2.5)	$(dS m^{-1})$	(g k	(g ⁻¹)	(g k	(g ⁻¹)			
7.12	0.27	0.0		0.0 0.3		.3		
Availa	Available nutrients **(mg kg ⁻¹)				g ⁻¹)			
K	Р	Ν	K	Р	Ν			
1.0	0.1	0.3 0.2		2.0	5.0			
	Particle size distribution (%)							
Clay	Silt	Sand		Texture				
0.0	2.0	98.0		98.0 Sand				

* In paste extract. **Extracts of: KCl for N; NaHCO₃ for P; NH₄-acetate for K; soil texture according to the International Soil Texture Triangle (Moeys 2014)

Samples of plants were analyzed according to methods cited by Estefan et al. (2013). ¹⁵N analysis was carried out using automated emission spectrometer (Fischer NOI-6 PC). The portion of nitrogen derived from fertilizer (%Ndff) present in the relevant plant was calculated in view of the ¹⁵N atom excess (¹⁵N a.e.) in materials (IAEA, 2008). The equation is as follows:

%Ndff = (¹⁵N a.e. in plant ÷ ¹⁵N a.e. in fertilizer) x 100

% FNR = Ndff (kg ha⁻¹) / rate of applied N $(kg ha^{-1}) x100$

Results and Discussion

Plant height:

The lowest height of 33.5 cm was given by the untreated B₀N₀ plants while the highest of 64.9 cm was given by those of B2N3 which received Azospirillum brasilense bacteria and the high N rate, with a relative increase of 93.6%. The main effect of biofertilization shows averages of 3.40, 1.63 and 12.68% due to B_1 , B_2 and B_3 , respectively (Table 3). Biofertilization showed positive effect only in presence of mineral N fertilization. The main effect on mineral N fertilization shows a pattern of $N_2 > N_3 > N_1 > N_0$ with highest plant height given by N_2 followed by N₃ then N₁ with increases averaging 39.8, 49.3 and 48.4 % due to N_1 , N_2 and N_3 respectively. Chantal et al. (2018) found that the high N, P and K level gave the highest sunflower plant high with 142.6 cm. These results support those of Mostafa and Abo-Baker (2010), who reported increased sunflower growth due to higher rate application of nitrogen. Similar experimental results were attained by Shah and Khanday (2005) as well as Sarkar and Mallick (2009).

Inorganic		Biofertiliz	ation (B)		
Fertilization (N)	\mathbf{B}_{0}	\mathbf{B}_1	\mathbf{B}_2	B ₃	mean
N ₀	33.50	34.37	31.17	55.67	38.68
N_1	52.40	53.50	52.50	57.90	54.08
N_2	62.00	58.00	53.80	57.17	57.74
N3	51.17	59.97	64.87	53.60	57.40
mean	49.77	51.46	50.58	56.08	
LSD: 0.05 = N: 0.61	; B: 0.61	; NB: 1.21			

Table 3. Response to N inorganic fertilization and N or P biofertilization of sunflower: plant height after 45day (cm)

Notes: B_0 : without biofertilization – B_1 : Azotobacter; B_2 : Azospirillum; B_3 : *Bacillus megaterium* N_0 , N_1 , N_2 and $N_3 = 0$, 73.5, 98.0 and 122.5 kg N ha⁻¹ (as ammonium sulphate) respectively.

Total chlorophyll:

Application of N singly increased the total chlorophyll in plant leaves. Plants receiving N gave high total chlorophyll in plant leaves (Table 4). The increase in ranged from 17.8% by N_2B_1 to 34.9% by N_3B_0 . Therefore, high N gave the highest total chlorophyll indicating a need for high N fertilization in order to obtain high chlorophyll in plant. In this case, soil should be reached to field capacity most of time to save the micro-organisms from these unsuitable conditions. The main effect on N fertilization shows a pattern of $N_3 > N_2 > N_1 > N_0$ with highest plant height given by N_3 followed by N_2 then N_1 . Increase averaged 30.55, 35.12 and 37.59 % due to N_1 , N_2 and N_3 , respectively. Biofertilization showed

positive effect only within absence of N. the main effect of biofertilization shows a decrease averaged 1.36, 3.48 and 2.71% due to B_1 , B_2 and B_3 , respectively as shown in Table 2. The chlorophyll amounts were observed with in-creased nitrogen doses. While the value obtained from 30 g N tree⁻¹ and 60 g tree⁻¹ doses were higher than the control application, the highest chlorophyll dose was observed in 90 g N tree⁻¹ dose. While the lowest chlorophyll was found in control, it was followed by the 30 g N tree⁻¹ dose and the highest values were observed in the same groups of 60 g N tree⁻¹ and 90 g N tree⁻¹ (**Erdinç, 2018**). It concluded that total chlorophyll was increased by increasing the rate of nitrogen

 Table 4. Response to N inorganic fertilization and N or P biofertilization of sunflower: total chlorophyll after

Inorganic		Biofertiliz	vation (B)		_
Fertilization (N)	\mathbf{B}_{0}	\mathbf{B}_1	\mathbf{B}_2	B ₃	mean
No	29.20	27.97	26.00	27.20	27.59
N_1	35.07	37.47	36.37	35.17	36.02
N_2	37.87	34.40	37.17	36.70	37.28
N_3	39.40	36.77	37.07	38.60	37.96
mean	35.38	34.90	34.15	34.42	
LSD: 0.05 = N: 0.27	; B: 0.27	; NB: 0.54			
See footnotes of Table	e 3	,			

Dry matter yield:

The pattern of response (Table 5) was rather similar to that of total chlorophyll. Application of *Bacillus Megaterium* (singly) under no N application (N₀B₃) gave the lowest dry matter yield of 5.53 kg ha⁻¹, while the highest was 44.20 kg ha⁻¹ (an increase of 699%), given by the high N non-biofertilized (N₃B₀). The main effect of N fertilization shows a pattern of N₃>N₁>N₂>N₀ with highest plant height given by N₃ followed by N₁ then N₂. Increases averaged 91.9, 36.9 and 143.7 % due to N₁, N₂ and N₃, respectively. Such a pattern of response was particularly evident under conditions of no biofertilization or under the Pdissolver *Bacillus Megaterium*. Nasim *et al.* (2011) observed that, with increasing N rate to sunflower, there was an increase in plant growth.Under biofertilization with the N-fixers there was little or no difference between the inorganic N-applied treatments. The main effect of biofertilization shows no positive response due to biofertilization. There were decreases averaging 35.0 31.8 and 31.5% due to B_1 , B_2 and B_3 , respectively. This shows that the biofertilizer organisms caused a depletion of soil available N leading to a decrease in plant growth and consequently N uptake. There should be enough available nutrients in the soil to make biofertilizer microorganisms increase plant growth.

Inorganic	1 ,	Biofertiliz	ation (B)		
Fertilization (N)	Bo	B 1	B ₂	B ₃	mean
No	19.54	8.94	12.19	5.53	11.55
N_1	25.14	17.89	21.32	24.29	22.16
N_2	18.56	21.10	22.29	13.75	18.93
N 3	44.20	20.87	17.53	29.98	28.15
mean	26.86	17.20	18.33	18.39	

Table 5. Response to N inorganic fertilization and N or P biofertilization of sunflower: Dry matter yield (kg ha⁻¹) in plants 45-day

LSD: 0.05 = N: 3.93 ; B: 3.93 ; NB: 7.85

See footnotes of Table 3

N uptake

Response of N uptake resembled that of the yield (Table 6). The lowest N uptake of 9.72 kgha⁻¹ was given by application of *Bacillus Megaterium* under no N fertilization (N₀B₃), while the highest of 65.36 kg ha⁻¹ (which surpassed the lowest by 572%) was given by the non-biofertilized high N (N₃B₀). The main effect of N fertilization shows a pattern of N₃>N₁>N₂>N₀. Increases averaging 91.9, 36.9 and 143.7 % due to N₁, N₂ and N₃, respectively. Such a pattern of no biofertilization or under the P-

dissolver *Bacillus Megaterium*. Under biofertilization with the N-fixers little or no difference between the inorganic fertilizers was noted. The main effect of biofertilization shows no positive response with the three applied biofertilizers, with all being similar in effect. Dcreases caused by the biofertilizers averaged 35.0, 31.8 and 31.5% due to B_1 , B_2 and B_3 , respectively. This indicates that the biofertilizer organisms depleted available N in the soil (which is sand nearly devoid of available N). These results agree with those obtained by Ahmed and El-Araby (2012) and Nadeem *et al.* (2014)

 Table 6: Response to N inorganic fertilization and N or P biofertilization of sunflower: N uptake (g ha⁻¹) in plants 45-day

Inorganic		Biofertiliz	ation (B)		
Fertilization (N)	Bo	B 1	\mathbf{B}_2	B ₃	mean
N ₀	27.08	15.64	19.12	9.72	17.89
N_1	41.09	33.59	33.58	38.31	36.64
N_2	29.19	34.45	36.44	25.85	31.48
N3	65.36	36.47	27.21	36.52	41.39
mean	40.68	30.04	29.09	27.60	
LSD: $0.05 = N$: 2.62	; B: 2.62	; NB: 5.23			
See footnotes of Tabl	le 3				

Nitrogen derived from fertilizer (Ndff):

Ndff (Table 7) was lowest of 9.06 kgha⁻¹given by the medium-N *Bacillus Megaterium* biofertilized treatment (N₂B₃).The highest of 22.61 (surpassing the lowest by 149.6%) was given by the high-N non-biofertilized N₃B₀ treatment. Under condition of no biofertilization or *B. Megaterium*, the highest Ndff

was given by the treatment of highest N dose. Under biofertilization with the N-fixers the medium N treatment showed highest Ndff. High Ndff indicates high efficient use of fertilizer N. A combination of biofertilizers such as N₂-fixers or P-dissolvers along with the soluble fertilizer N would enhance the positive effect of N fertilization (Hekal, 2015).

Table 7. Response to N inorganic fertilization and N or P biofertilization of sunflower: Ndff (kg ha⁻¹) in plants45-day

Inorganic					
Fertilization (N)	B ₀	\mathbf{B}_1	\mathbf{B}_2	B ₃	Mean
N_1	13.50	7.75	9.80	12.12	10.79
N_2	9.67	15.48	16.22	9.06	12.61
N 3	22.61	13.43	11.57	16.83	16.11
mean	15.26	12.22	12.53	12.67	

See footnotes of Table 3. Values are averages and no statistical analysis was done.

Fertilizer nitrogen recovery (FNR):

Fertilizer N recovery (FNR) represents the portion of N derived from fertilizer in relation to the rate of applied N. Table 8 shows that the lowest FNR of 9.24% was obtained in the plants given the medium N *B. Megaterium* (N₂B₃) and the second lowest of 9.87 % was obtained by the medium N non-biofertilized treatment (N₂B₀). The highest of 18.45% (surpassing the lowest by 99.7%) was given by the

high-N non-biofertilized N_3B_0 treatment. Under condition of no biofertilization or *B. Megaterium*, the highest FNR was given by high or low dose of N. Under biofertilization with the N-fixers the medium N treatment showed highest FNR. The direct method on ¹⁵N add is the most adequate to determine the recovery efficiency of N derived from fertilizer (Araújo et al., 2018).

 Table 8. Response to N inorganic fertilization and N or P biofertilization of sunflower: ¹⁵N recovery (%) in plants 45-day

Inorganic	-	Biofertiliz	ation (B)		
Fertilization (N)	Bo	B 1	B ₂	B ₃	Mean
N_1	18.37	10.54	13.33	16.49	14.68
N_2	9.87	15.80	16.55	9.24	12.86
N 3	18.45	10.96	9.44	13.74	13.15
Mean	15.56	12.43	13.11	13.16	

See footnotes of Table 2. Values are averages and no statistical analysis was done.

References

- Ahmed, H. F. S. and El-Araby, M. M. I. 2012. Evaluation of the influence of nitrogen fixing, phosphate solubilizing and potash mobilizing biofertilizers on growth, yield, and fatty acid constituents of oil in peanut and sunflower. African J. Biotech. 11(43):10079-10088.
- Araújo, E. S., da Silva, B. F., Chieza, E. D, Urquiaga, S., Guerra, J. G. M., Costa, J. R. and Espíndola, J. A. A. 2019. Comparison of 15N isotope methods to determine the recovery efficiency of nitrogen from green manure. Pesq. agropec. bras., Brasília 54: e00721
- **Carter, M. R. and Gregorich, E. G. 2008.** Soil sampling and methods of analysis. Canada. Soc. Soil Sci., 2nd Ed.
- Chantal, K., Ongor, B. T., Bandushubwenge, D., Soter, N. and Felix, S. 2018. Effects of different nitrogen fertilizer levels on sunflower growth and yield attributes. Pakistan J. Nut. 17(11): 557-562.
- Diacono, M., Rubino, P. and Montemurro, F. 2013. Precision nitrogen management of wheat. A review. Agron. Sustain. Dev. 33:219–241.
- El-Sayed, L. M. 2012. Determination an optimum cropping pattern for Egypt. M. Sc. Am. Uni. Cairo, Egypt.
- **Erdinç U.Y.S.A.L. 2018.** Effects of Nitrogen Fertilization on the Chlorophyll Content of Apple. Meyve Bilimi Fruit Sci. 5(1):12-17.
- Estefan, G., Sommer, R. and Ryan, J. 2013. Methods of soil, plant and water analysis: A manual for the West Asia and North Africa regions. Int. Center Agric. Res.in Dry Areas (ICARDA), 3rd Ed.
- Hekal, M.A. 2015. Fertilizer N recovery in sunflower crop and interaction between bio and inorganic fertilization using stable ¹⁵N isotope. M.Sc. Thesis, Fac. of Agric. Benha Univ. Egypt

IAEA 2008. Training course. International Atomic Energy Agency (IAEA) No. 14, Vienna, Austria.

- Keshta, M. M. and EL-Kholy, M. H. 1994. Effect of inoculation with N₂-fixing bacteria, nitrogen fertilizer and organic manure on sunflower. Proc. Int. Symp. Biolog. N₂- fixation and Crop prod., Cairo, Egypt, 11-13 May:181-187.
- Li, S. X., Wang, Z. H., Li, S. Q. and Gao, Y. J. 2015. Effect of nitrogen fertilization under plastic mulched and non-plastic mulched conditions on water use by maize plants in dry bland areas of China. Agric. Water Manag. 162:15–32.
- Mishra, B. K. and Dadhich, S. K. 2010. Methodology of nitrogen bio-fertilizer production. J. Adv. Devel. Res. (1): 3-6.
- **Moeys, J. 2014.** The soil texture wizard: R-function for plotting, transforming and exploring soil texture data. Swedish University of Agric. Sci. Uppsala, Sweden.
- Mohamed, A. A. E. 2003. Response of sunflower to Phosphorine and Cerealine on growth and yield of soybean (*Glycine max L.* Merril) crop Res. (Hisar) 17: 160-163.
- Mostafa, G. G. and Abo-Baker, A. A. 2010. Effect of bio-and chemical fertilization on growth of sunflower (*Helianthus annuus* L.) at south valley area. Asian J. Crop Sci. 2(3):137-146.
- Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A. and Ashraf, M. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotech. Adv. 32:429-48.
- Nasim, W., Ahmad, A., Wajid, A., Akhtar, J. and Muhammad, D. 2011. Nitrogen effects on growth and development of sunflower hybrids under agroclimatic conditions of Multan. Pak. J. Bot. 43:2083-2092.
- Obour, A. K., Mikha, M. M., Holman, J. D. and Stahlman, P. W. 2017. Changes in soil surface

chemistry after fifty years of tillage and nitrogen fertilization. Geoderma 308:46–53.

- Osman, E. B. A. and Awed, M. M. M. 2010. Response of sunflower (*Helianthus annuus* L.) to phosphorus and nitrogen fertilization under different plant spacing at New Valley. Assiut Univ. Bull. Environ. Res. 13(1): 11-19.
- Sarkar, R. K. and Mallick, R. B. 2009. Effect of nitrogen, sulphur and foliar spray of nitrate salts on performance of Spring sunflower (*Helianthus annuus*). Indian J. Agric. Sci. 79:986-990.
- Shah, A. H. and Khanday, B. A. 2005. Response of sunflower (*Helianthus annuus* L.) to nitrogen and phosphours under Kashmir vally conditions. SKUAST J. Res. 7:214-218.
- Sharma, K. N. and Namdeo, K. N. 1999. Effect of biofertilizers and phosphorus on growth and yield of soybean (Glycine max L.). Crop Research Hisar 17(2):160-163.
- USDA 2008. Oil seed situation and outlook. USDA Foreign Agricultural Service (FAS). http://www.fas.usda.gov.

التسميد النيتروجينى المعدنى والحيوى لنبات دوار الشمس المنزرع فى أرض رملية بإستخدام تقنية ن¹⁵ محمد أشرف هيكل¹، على أحمد عبدالسلام²، سليمان محمد سليمان¹، يحيي جلال محمد جلال¹ ، أحمد عبدالمنعم مرسى،¹ وسام رشاد زهرة² ¹ قسم بحوث الأراضى والمياه، مركز البحوث النووية، هيئة الطاقة الذرية، أبوزعبل 13759، مصر ² قسم الأراضى و المياه كلية الزراعة، مشتهر، جامعة بنها

أجريت تجربة خلال الموسم الزراعى صيف 2014 بمزرعة قسم بحوث الأراضى والمياه – مركز البحوث النووية – هيئة الطاقة الذرية – أبوزعبل – مصر لمتابعة تأثير اللقاحات البكتيرية المختلفة ومعدلات التسميد المعدنى بالنيتروجين على نباتات دوار الشمس المنزرعة فى تربة رملية فقيرة (بكر). تم إنبات النباتات حتى عمر 45 يوم وتم قياس إستجابتها لعوامل التجربة التى آثرت على صفات النمو والكلوروفيل ومحصول المادة الجافة وامتصاص واستعاضة النيتروجين. كانت صورة السماد المعدنى النيتروجينى هى سلفات الأمونيوم والتى تحتوى على 2% وفرة من المادة الجافة وامتصاص واستعاضة النيتروجين. كانت صورة السماد المعدنى النيتروجينى هى سلفات الأمونيوم والتى تحتوى على 2% وفرة من الدرات المرقمة بالنظير الثابت للنيتروجين. كانت صورة السماد المعدنى النيتروجينى هى سلفات الأمونيوم والتى تحتوى على 2% وفرة من الذرات المرقمة بالنظير الثابت للنيتروجين. كانت صورة السماد المعدنى النيتروجينى هى سلفات الأمونيوم والتى تحتوى على 2% وفرة من الذرات المرقمة بالنظير الثابت للنيتروجين. كانت صورة السماد المعدنى النيتروجينى هى سلفات الأمونيوم والتى تحتوى على 2% وفرة من الدرات المرقمة بالنظير الثابت للنيتروجين. كانت صورة السماد المعدل العالى من النيتروجين وبكتريا الازوسبيريللم (N₃B₂) بنسبة زيادة حوالى 9.30% فى طول النبات حيث أنها أعطت أعلى طول للنبات (64.80 سم). تراوحت الزيادة فى الكلوروفيل الكلى من 1.78% بواسطة 1.8⁹ مرفرة من 9.30% ولي 9.40% بواسطة 1.8⁹ محال العالى من النيتروجين وبكتريا الازوسبيريلام (N₃B₁) بنسبة زيادة وللى 9.40% بواسطة 0.8¹⁰ بواسطة 1.8¹⁰ مرال وفيل الكلى من 1.78% بواسطة 1.8¹⁰ ملي 9.40% مرال 1.8¹⁰ مرال معدل العالى من النيتروجين ولم تتلقى تسميد حيوى (N₃B₀) الى 9.40% بواسطة 1.8¹⁰ ملي مالالالى 9.40% مرال الموجودة الموجودينى كان بواسطة النباتات التى تلقت المعدل العالى من النيتروجين ولم تتلقى تسميد حيوى (N₃B₀) بنسبة زيادة حوالى 1.8¹⁰ ملي مالكلي الكلى). أعلى محصول مادة موالا 1.8¹⁰ ملي 1.