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Abstract 

It is a myth that a dataset a priori may not violate the assumptions of univariate general linear model 

(GLM).  Validation of hypothesis testing (HT) is threatened if assumptions are violated.  This research aims to 

check normality and variance homogeneity for between- and within-factor levels.  In a 2-year field trial, Lolium 

multiflorum cv „Local‟ was seeded in 6 percentage mixtures with 3 Trifolium alexandrinum cvs components in 

mixtures.  A factorial model was fitted to forage yield, with 2 between-factors, and one within. Quantile-

Quantile (Q-Q) plots and Shapiro-Wilk test were used to check normality.  For between-factors, variance 

homogeneity is tested using plots of residuals and HT‟s Levene‟s test.  For repeated measures, Mauchly‟s test is 

used to estimate sphericity.  Six extreme outliers were spotted overall in the 2 years.  The Q-Q plots showed that 

most residuals lay on the fitted lines, implying that normality was not violated.  Residual error variance 

homogeneity was violated in Year 1.  Inspecting repeated-harvests variances, Mauchly‟s W declared a minor 

violation of sphericity.  Violations of model assumptions exist in real-life data.  

 

Keywords: Assumptions, Homogeneity, Normality, Model, Repeated Measures, Residuals, Sphericity, Variance, 

Violation.    

 

Introduction 

 

Between-Factors ANOVA  
The univariate GLM assumptions indicate that 

the response variable, 𝑌 should be predicted from a 

fitted predictor variable, 𝑌̂, comes from a covariance 

matrix of equal variance and covariance, and is ~𝑁.  

Put differently, residuals are normal, have a common 

variance (𝜎2), and are independent.  Diagnostic tests 

are carried out via HT and residuals plots.  

Reporting whether a test is performed on the 

response or the residuals is ignored.  Kozak & 

Piepho (2018) confirmed that the residuals are 

relatively more informative. Moreover, relying on 

only HT might be misleading.  Draper & Smith 

(1981, p. 141) considered (𝑒𝑖), from its definition, as 

the amount of variation a fitted equation failed to 

explain.  If the model is correct, 𝑒𝑖 should not decline 

assumptions.  Steyn (2021) explained that interest is 

in the y‟s, given that x has already been entered.  The 

interest is in the unexplained variation (residuals).  

Nonnormal residuals occur due to nonnormal y, but 

normal y does not guarantee normal residuals.    

A dataset is „messy‟ if it has outliers, belongs to 

skewed/kurtotic distributions, and suffers from 

variance heterogeneity (Shahin, 2017).  Diagnostic 

tests are suggested if violations exist (Lix et al., 

1996).  Delacre et al. (2020) argued that assumptions 

are rarely fulfilled.  Since variance heterogeneity 

caused biasedness of F test, they recommended 

Brown-Forsythe (Brown & Forsythe, 1974) and 

Welch‟s ANOVA (Kohr & Games, 1974).  Type-1 

error is affected by violations even with 

nonparametric tests (Marcinko, 2014).  Transforming 

data or handling outliers may be practiced 

(Schützenmeister et al., 2012; Schützenmeister & 

Piepho, 2012; Debashis, 2013). 

Whether a test is robust to one violations has 

been debated.   Blanca et al. (2017) considered that 

real data is not often N-distributed and/or 

homoscedastic.  They studied how robustness to 

nonnormality be related to type-1 error.  (Blanca et 

al., 2013) addressed skewness and kurtosis effects on 

type-1 error and power.  Variance heteroscedasticity 

was addressed (Blanca et al., 2018), and it was also 

tested related to type-1 error (Rogan & Keselman, 

1977).   

Under homoscedasticity if factor levels are 

small, and n goes to ∞, F test is robust to 

nonnormality (Arnold, 1980; Akritas & Papadatos, 

2004).  When factor levels go to ∞, ANOVA 

becomes more complicated (Wang & Akritas, 2006).  

In a one-factor  (Boos & Brownie, 1995) and in 

mixed models (Akritas & Arnold, 2000), at 

heteroscedasticity for factor levels =30 with n= 4-15 

at 𝛼 = 0.05, type-1 error inflated.  At 

homoscedasticity, it was close to 𝛼.  Akritas & 
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Papadatos (2004) addressed a heteroscedasticity 

when factor levels go to ∞ at small/large n.  They 

might not be homoscedastic if n is small.  In 

balanced /unbalanced cases, F test was sensitive to 

heteroscedasticity.  In Driscoll's (1996), 

nonnormality affected type-1 error relative to 𝛼.  

Also, with t=2-21 and n=2-20, this resulted in very 

trivial differences between type-1 error and 𝛼 under a 

range of distributions.  Approaching normality, the 

relative difference was only 0.01.  As well, 

increasing both t and n kept the magnitude narrow.  

Driscoll (1996) emphasized that it is not a faulty 

decision to apply ANOVA based on a nominal 0.05 

where the true one is 0.03 difference. 

Does ANOVA‟s „claimed‟ robustness to 

heteroscedasticity extend to many main and 

interaction effects?  Bathke (2004) assessed the 

results of (Boos & Brownie, 1995; Akritas & Arnold, 

2000) since they have only assumed 

homoscedasticity.  Therefore, he tested F test for 

main effect of one factor, in a factorial ANOVA, of 

maybe, many factors, under heteroscedasticity for all 

factors except for X1, he simulated changes in type-1 

error, at 𝛼 = 0.05, for 2 factors when levels of X1 

were 4 and 20, X2=2, and 𝜎2 increased by 4- , 9-, 25- 

and 100-fold, among the variances of factor X2.  At 

homoscedastic 𝜎2, type-1 error was 0.048 regardless 

of X1 levels.  At 𝜎2 = 100, it was 0.073 for X1=4 

and 0.055 for X1=20.   

Inspecting outliers is crucial for their may 

influence inferences.  Outliers might distort 

parameter estimates (Wainer, 1976; Lind & Zumbo, 

1993),  “Fringeliers” lie ≥ 3 𝑆𝐷 (Wainer, 1976).  

Osborne & Overbay (2004) considered a fringelier is 

within the domain of outliers.  Draper & Smith 

(1981, pp.152-153) defined an outlier if its |𝑒𝑖| lies 

farther 𝑒̅𝑖 by ≥ 3 − 4 𝑠, to agree with Jones's (2019) 

where it lies > 𝜆𝜎 from 𝑥̅, |𝑥𝑖| > (𝑥̅+ 𝜆𝜎), 𝜆= 2-3. 

Three valid questions arise: i) What reasons do 

outliers? ii) How does one handle them? and iii) 

What are the consequences of their keeping/deleting?  

Neither Draper & Smith (1981) nor (Halldestam, 

2016) supported deletion, perhaps outliers might 

have resulted from significant lurking variables 

(Draper & Smith, 1981; Orr et al., 1991), or outliers 

are yet as credible as any observation (Halldestam, 

2016).  Contrarily, Osborne & Overbay (2004) 

reported some researchers who adopted their outright 

removal.    

Outliers may affect type 1 & 2 errors (Osborne 

& Overbay, 2004; Halldestam, 2016; Jones, 2019).  

To examine how a parameter estimate is „robust‟ 
1
 

and outliers affect inferences Halldestam (2016) 

simulated 3 treatments using n= 33, 100, and 1000 

with one outlier in all 3, type-1 error was < α, 

indicating that 1-way ANOVA is not very sensitive to 

                                                
1
  Robustness results in satisfying estimators if 

dataset is unaffected by outliers and/or little 
violations assumptions. 

a single outlier regardless of n.   A change in type-1 

error implies a change in type 2.  This is to conclude 

that type-2 error needs investigation. 

Outliers influence extraction in Exploratory 

Factor Analysis (EFA) 
2
.  Liu et al. (2012) explored 

outliers‟ magnitude and number relation to extracted 

factors by conducting a 3-way ANOVA (3 outlier 

levels, 4 magnitudes, and 4 variables w/ outliers) on 

factor number.  They calculated (𝜂2)
3
 to find that 

sources with highest 𝜂2 contained an outlier 

component.  Generally, extreme points are either 

„influential‟ or „outlier‟.  Orr et al. (1991) 

emphasized that outliers do not threat test validity.  

Outliers must be inspected (Wainer, 1976; 

Vandierendonck & De Soete, 1983; Lind & Zumbo, 

1993), or be waived by nonparametric tests (Snell & 

Sprent, 1995; Kvam & Vidakovic, 2007).  Arnold 

(1980) phrased, “… asymptotically, no observation 

has a nontrivial effect on the estimation of its mean.”  

Within-Factors ANOVA  
Since harvests are on the same unit, these 

harvests might suffer from pairwise non-zero 

covariances and heterogeneous variances in Σ matrix.  

To test ≥2 Σ equality, Box‟s M
4
 is employed (Abdi, 

2010; Zaiontz, 2023).  Sphericity should not be 

violated (Lane, 2016) by testing variance of 

differences (Kim, 2015).  If it did, this would inflate 

type-1 error (Lane, 2016; Haverkamp & Beauducel, 

2017).  Haverkamp & Beauducel (2017) tested 

sphericity, n=20-100, and within-subjects number 

(t=3, 6, 9) on ANOVA-no correction, ANOVA 

Greenhouse-Geisser (GG) correction 𝜀̂ 5
, and 

ANOVA- Huynh-Feldt (HF) correction 𝜀̃ 6
.  With 

sphericity, for t=3, type-1 error was close to 𝛼, and 

„n‟ did not affect the 3 ANOVAs.  If violated, for 

ANOVA-no correction, type-1 errors started at 0.07, 

n=20, by reaching 100, a negligible increase was 

detected, with not much shift between n=40, 60, and 

80.  For ANOVA (GG and HF), they were close to 𝛼.  

Depending on its severity, Lane (2016) held that F 

test‟s df got higher to reduce p and inflated type-1 

error.  Multiplying by GG‟s 𝜀̂, or HF‟s 𝜀̃, df are 

lowered.  Epsilon reflects how sphericity is violated 

(Box, 1954 as cited in Lane, 2016), it ranges ((t-1)
-1

 -

1.0) (Lane , 2016).  Quintana & Maxwell (1994) 

suggested HF‟s 𝜀̃ if 𝜀̃ > 0.75, yet GG‟s 𝜀̂ otherwise. 

Both Pillai‟s Trace and Wilki‟s Lambda (Λ) are 

associated with MANOVA (Ateş et al., 2019).  For 

both, if 𝑝 < 𝛼, H0 is rejected; however, they are 

                                                
2
  EFA, is a multivariate procedure to identify factors 

that explain the order & structure among variables  
(Liu et al., 2012; Watkins, 2018). 

3
  𝜂2 is SS of a factor divided by the total SS.  

4
 For m independent populations the Box’s M is to 

test H0: Σ1 = Σ2 =⋯= Σm 
5 The Greenhouse-Geisser procedure estimates 

epsilon (𝜀̂) to correct F test’s df. 
6 The Huynh-Feldt correction estimates epsilon (𝜀̃) to 

correct F test’s df. 
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interpreted differently.  Pillai‟s Trace ranges 0.0-1.0; 

the closer to 1.0, the higher the contribution of a 

predictor; for Wilki‟s Λ, the closer to 0.0, the higher 

the contribution. 

This research aims at diagnosing violation of 

normality, variance homogeneity and sphericity for a 

between- and within-factor model. 

Materials and Methods 

Field Experiment Layout, management, and Data 

Collection  

Annual ryegrass (Lolium multiflorum) cv. Local, 

was seeded in mixtures with 3 Egyptian clover 

(Trifolium alexandrinum) cultivars: Helaly, Giza 6, 

and Gemiza. The Seed mixture was broadcast at 

seeding rates:12.0 kg and 20.0 kg fa
-1

 for
 
ryegrass 

and clover.  On a seed-weight basis, percentage 

ryegrass: clover mixtures were 20:80, 80:20, 30:70, 

50:50, 60:40, and 40:60.   

Trials were laid out factorially in 3 clover 

components x 6 mixtures in 4 RCBD in 2021 and 5 

in 2022.  Treatments were in three tiers per block.  

Plot area was ~ 6.75 m
2
 (1.85 x 3.65).  Planting was 

on 9 November 2021 and on 30 October 2022 at 

Benha University Farm (30
0
 21`10.2 N Lat., 31

0
 

13`36.43 E Long.) on [silty clay (fine clayed, mixed 

typic fluvude)] soil.  The Previous crop was carrot 

(Daucus carota) in 2021 and Zea mays L. in 2022.  

Trials were cut 3 times in 2021 and 4 in 2022.  

Following each cut, 25 kg calcium superphosphate 

(15.5% P2O5) was added.  A random sample of fresh 

yield was collected to estimate dry matter.   

Two-Between Factors and One-Within Factor 

Model   

A model was fitted with two between-factors, 

and one within-factor.  The two factors are 3 clover 

components in 6 mixture ratios; the one within-factor 

is the number of harvests.  The LAM is, 

𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝜌𝑙 + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗+(𝜌𝛼𝛽)𝑖𝑗𝑙 + 𝜓𝑘 +

(𝜌𝜓)𝑙𝑘 + (𝛼𝜓)𝑖𝑘 + (𝛽𝜓)𝑗𝑘+(𝛼𝛽𝜓)𝑖𝑗𝑘 + 𝜀𝑖𝑗𝑘𝑙

      

where, 𝑌𝑖𝑗𝑘𝑙  is the l
th

 total dry forage yield (kg unit 

area
-1

) for block, 𝜌𝑙, and of i, j, k levels of forage 

mixture yield, 𝛼𝑖, clover in a mixture, 𝛽𝑗, and harvest 

forage yield, 𝜓𝑘.  And (𝜌𝛼𝛽)𝑖𝑗𝑙  is error (a), and 𝜀𝑖𝑗𝑘𝑙  

is the residual error ~N and iid (mean zero and 𝜎𝜀
2).   

 

Model Assumptions Diagnostics 

The model assumes that the observations of 𝑌𝑖𝑗𝑘𝑙  

are assumed independent and normally distributed 

(IND) with error variance (𝜎𝜀
2). The expected mean 

response is 𝐸(𝑦𝑖𝑗𝑘𝑙) = 𝜇 + 𝜌𝑙 + 𝛼𝑖 + 𝛽𝑗 +

(𝛼𝛽)𝑖𝑗+(𝜌𝛼𝛽)𝑖𝑗𝑙 + 𝜓𝑘 + (𝜌𝜓)𝑙𝑘 + (𝛼𝜓)𝑖𝑘 +

(𝛽𝜓)𝑗𝑘 + (𝛼𝛽𝜓)𝑖𝑗𝑘 and a residual error.  However, 

repeated forage harvests might suggest that residuals 

may not have a common variance.  Hence, these 

urges testing sphericity assumption. 

 

Table 1. ANOVA for two-between factors and one-within factor repeated measure model.  (Block is random, A, 

B, and C are fixed). 

Source DF EMS 

Block, R R-1 𝜎𝑒
2 + 𝑐𝜎𝛿

2 + 𝑎𝑏𝑐𝜎𝜌
2 

Mixture, A A-1 𝜎𝑒
2 + 𝑐𝜎𝛿

2 + 𝑟𝑏𝑐 ∑(𝛼)𝑖
2

𝑖

/(𝑎 − 1) 

Cultivar, B B-1 𝜎𝑒
2 + 𝑐𝜎𝛿

2 + 𝑟𝑎𝑐 ∑(𝛽)𝑗
2

𝑗

/(𝑏 − 1) 

A x B (A-1) (B-1) 𝜎𝑒
2 + 𝑐𝜎𝛿

2 + 𝑟𝑐 ∑(𝛼𝛽)𝑖𝑗
2

𝑖,𝑗

/(𝑎 − 1)(𝑏 − 1) 

Error (a), RAB (R-1) (AB-1) 𝜎𝑒
2 + 𝑐𝜎𝛿

2 

Harvest, C C-1 𝜎𝑒
2 + 𝑟𝑎𝑏 ∑ 𝜓𝑘

2

𝑘

/(𝑘 − 1) 

RC (R-1) (C-1) 𝜎𝑒
2 + 𝑎𝑏𝜎𝜃

2 

A x C (A-1) (C-1) 𝜎𝑒
2 + 𝑟𝑏 ∑(𝛼𝜓)𝑖𝑘

2
/(𝑎 − 1)(𝑐 − 1)

𝑖,𝑘

 

B x C (B-1) (C-1) 𝜎𝑒
2 + 𝑟𝑎 ∑(𝛽𝜓)𝑗𝑘

2
/(𝑏 − 1)(𝑐 − 1)

𝑗,𝑘

 

A x B x C (A-1) (B-1) (C-1) 𝜎𝑒
2 + 𝑟 ∑(𝛼𝛽𝜓)𝑖𝑗𝑘

2
/(𝑎 − 1)(𝑏 − 1(𝑐 − 1)

𝑖,𝑗,𝑘

 

Residual error, RABC (R-1) (C-1) (AB-1)  𝜎𝑒
2 

Total, RABC RABC-1  

 

 

 



54                       Badr et al.  

 

Annals of Agric. Sci., Moshtohor, Vol. 62 (4) 2024 

Residuals Checking 

For the between-factor, 𝑒̂𝑖𝑗𝑙 = 𝑦𝑖𝑗𝑙 − 𝑦̂𝑖𝑗𝑙 to 

estimate 𝜀𝑖𝑗𝑙 = 𝑌𝑖𝑗𝑙 − 𝐸(𝑌𝑖𝑗𝑙), and the standardized 

residuals, 𝑠𝑡. 𝑒̂𝑖𝑗𝑙 , are estimated.   Hence, both 

hypotheses testing model assumptions, as well as the 

visual residual plot analyses, are all only limited to 

the estimated MS error variance resulting from the 

univariate model.  For the within-factor, 𝑒̂𝑖𝑗𝑘𝑙 =

𝑦𝑖𝑗𝑘𝑙 − 𝑦̂𝑖𝑗𝑘𝑙  to estimate  𝜀𝑖𝑗𝑘𝑙 = 𝑌𝑖𝑗𝑘𝑙 − 𝐸(𝑌𝑖𝑗𝑘𝑙), and 

the 𝑠𝑡. 𝑒̂𝑖𝑗𝑘𝑙  are estimated.  Both mean errors, 

𝑒̅̂𝑖𝑗𝑙  & 𝑒̅̂𝑖𝑗𝐾𝑙 = 0.  Std. residuals are plotted vs. any 

factor (Rawlings et al., 1998) to check assumptions.  

Normal quantile-quantile (Q-Q) plots of std. 

residuals vs. normal theoretical z are used to check 

violation of normality.  Outliers (Onoz & Oguz, 

2003; Zimmerman, 2010; Liu et al., 2012; Jones, 

2019) are spotted in a Q-Q plot.  Boxplots are used to 

check outliers which are measured in s units from 

median.  Skewness, 𝛾1, and kurtosis, 𝛾2, (Blanca et 

al., 2013; Blanca et al., 2017; Roser et al., 2020) are 

to check normality.  Both stem from 3
rd

 and 4
th

 

moments.  According to Blanca et al. (2013),  

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 𝛾1 =
√𝑛(𝑛 − 1)

𝑛 − 2

𝑚3

𝑚2

3
2⁄
 

The more 𝛾1is closer to 0, the more the distribution is 

symmetrical. 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 𝛾2 =
(𝑛 − 1)

(𝑛 − 2)(𝑛 − 3)
{(𝑛 + 1) (

𝑚4

𝑚2
2 − 3)

+ 6} 

where, n=sample size, 𝑚𝑘 = ∑ (𝑦𝑖 − 𝑦̅)𝑘𝑛
𝑖=1 . 

 

When 𝛾2 is closer to 0, this indicates that the 

distribution is peaked as ~𝑁(𝜇 = 0, 𝜎2 = 1), and if 

𝛾2 > 0, it is more peaked and if 𝛾2 < 0, it is more 

flattened. 

In a univariate ANOVA model, for testing 

whether the estimated residual error variances 𝜎̂𝑒
2 are 

homogeneous among treatment groups, the 𝑠𝑡𝑑. 𝑒̂𝑖𝑗𝑙 , 

plotted vs. fitted 𝑦̂𝑖𝑗𝑙  (Kim, 2019).  It is also tested 

using Levene‟s test (Kim & Cribbie, 2018; Zhou et 

al., 2023).  Levene‟s W tests: 

𝐻0: 𝜎𝑖
2 = 0 𝑣𝑠. 𝐻𝐴: 𝜎𝑖

2 ≠ 0,
𝑖 = 1 … . 𝑘 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝛼   

 𝑊 =
(𝑁 − 𝑘)

(𝑘 − 1)
 

∑ 𝑁𝑖(𝑍̅𝑖. − 𝑍̅..)
2𝑘

𝑖=1

∑ ∑ (𝑍𝑖𝑗 − 𝑍̅𝑖.)
2𝑁𝑖

𝑗=1
𝑘
𝑖=1

 

where Ni is size of  i
th

 treatment, and 𝑍𝑖𝑗 = |𝑌𝑖𝑗 − 𝑌̅𝑖.|, 

where 𝑌̅𝑖. is the i
th

 treatment mean.  W < 𝐹𝛼,𝑘−1,𝑁−𝑘 , 

𝐻0 is failed to reject. 

For repeated-measure ANOVA, sphericity is to 

check variance homogeneity.  Mauchly‟s W test of 

sphericity  is a 𝜒𝛼,𝑘−1
2  (Haverkamp & Beauducel, 

2017), (Blanca, Arnau, García-Castro, et al., 2023).  

If sphericity is met, H0 is failed to reject, 

𝐻0: 𝜎(𝑌𝑖−𝑌𝑖́)
2 = 0, 𝐻𝐴: 𝜎(𝑌𝑖−𝑌𝑖́)

2 ≠ 0   𝑖 ≠ 𝑖́ where 

𝜎(𝑌𝑖−𝑌𝑖́)
2  is the variance of a difference between 

pairwise treatment, 𝜎(𝑌𝑖−𝑌𝑖́)

2 = 𝜎𝑌𝑖

2 + 𝜎𝑌𝑖́

2 − 2𝜌𝜎𝑌𝑖
𝜎𝑌𝑖́

, 

where 𝜌 is the correlation coefficient. 

If sphericity is violated, there is a resolution to 

apply a correction factor, the Greenhouse & Geisser 

Epsilon (𝜖) (Lane, 2016), to reduce df in the F test.  

𝜖 value ranges (1-k)
-1

-1.0).  The 𝜖 is estimated by, 

𝜖𝐺̂−𝐺

=
𝐾2(𝑑𝑖𝑎𝑔 𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑠̅)2

(𝐾 − 1)(∑ ∑ 𝑆𝑖,𝑗
2 − 2𝐾 ∑ 𝑆𝑖̅.

2 + 𝐾2𝑆̅2)𝑘
𝑗=1

𝑘
𝑗=1

𝑘
𝑖=1

 

where i & j are the rows and columns of S, the 

covariance matrix, and 𝑆̅ mean of all elements in S, 

𝑑𝑖𝑎𝑔 𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅=diagonal mean, mean of variances.   

In addition, Pillai‟s Trace and Wilki‟s Lambda, 

Λ, are estimated (Ateş et al., 2019).  

𝑃𝑖𝑙𝑙𝑎𝑖′𝑠 𝑇𝑟𝑎𝑐𝑒 𝑽 = 𝑡𝑟𝑎𝑐𝑒 [𝑯(𝑬 + 𝑯)−𝟏] 
where, H is the treatment SS and cross product 

matrix, and E= error SS and CP matrix.  For p x p A 

matrix, the Trace (A)=∑ 𝑎𝑖𝑖
𝑝
𝑖=1 .   

𝐓 = ∑ ∑(𝒀𝒊𝒋 − 𝒚̅𝒊.)( 𝒀𝒊𝒋 − 𝒚̅𝒊.)
𝑻

𝒏𝒊

𝒋=𝟏

𝒌

𝒊=𝟏

+ ∑ 𝒏𝒊

𝒌

𝒊=𝟏

(𝒚̅𝒊.

− 𝒚̅..)(𝒚̅𝒊. − 𝒚̅..)
𝑻 

H0 is rejected if 𝑽 is high.  Wilk‟s Lambda 𝚲 =
|𝐄|

|𝐇 + 𝐄|⁄ .  H0 is rejected if Wilk‟s lambda is near 

zero.  Analyses were done using the IBM SPSS 23.0. 

 

Results and Discussion 

 

Between-Factors Model 

Boxplot used to inspect outliers (Williamson et 

al., 1989) for dry forage yield for harvests in the 2 

years (Figs. 1 & 2).  Figure 1 shows 2 outliers in Year 

1 and 4 in Year 2.  According to Wainer (1976), a 

fringelier lies ≥ 3 s.  Draper & Smith (1981, pp.152-

153) considered any |𝑒𝑖|-𝑒̅𝑖, ≥ 3𝑠 − 4𝑠 an outlier.  

Another way to check outliers is to estimate 

IQR=((Q3-Q1) (Whaley, 2005).  IQR ranged ~ 0.50-

0.75 and ~ 0.40-0.80 in the 2 yr.  The Q-Q plot 

(Huang, 2007; Rousseeuw & Hubert, 2011; Hawkins, 

2023) (Fig. 2) indicated that z scores lie off the 

normal 45
0
 line.   

Outliers in this study do not seem ingenuine; so, 

we did not correct for.  Kozak et al. (2015) concluded 

that both means and C.Is. are affected by faulty 

numbers.  We think that even if outliers result from 

mistakes, their discarding results in unbalanced data.  

Kozak et al. (2015) indicated that outlier in „large‟ n 

is less likely to occur.  Their claim though is 

theoretically true; still, how „small‟ is small?  Wu & 

Zuo (2009) suggested robust estimates such as 

trimmed and winsorized means.  We assert, however, 

that uncontrolled complex spatial/temporal variations 

may cause outliers. 
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Fig. 1. Box plot of total forage yield per harvest in 2021 and 2022. 

 

 

 

 

 

 

 

 

 

 

 

(Rawlings et al., 1998) stated that normal 

residuals are not necessarily required for parameter 

estimation and partition of total variation; yet 

nonnnormality affects significance testing and C.Is.  

Normality is checked by normal Q-Q (Fig. 2) and by 

HT of skewness 𝛾1 and kurtosis 𝛾2, and by Shapiro-

Wilk‟s test (Table 2).  Residual errors (𝜇 = 0, 𝜎2 =
1) are represented by the fitted line intercept=0 and 

slope=1 (Fig. 2).  Majority of std. 𝑒̂𝑖𝑗𝑙  in both years 

lie on the fitted lines, implying that nonnormality 

was not a problem.  Yet, there exist „heavy‟ tails in 

Year 2.  Checking skewness 𝛾1and kurtosis 𝛾2 HT 

(Table 2), nearly all z scores for the 2 parameters in 

the 2 years were <𝑍0.025 = ±1.96.  Overall, H0 failed 

to be rejected.  Surprisingly, in Year 2, Harvest 4, 

there lies a point with an estimated residual near 

3.5 𝑠; however, HT for skewness had a 𝑝 > 0.05.  

This concurs with what Kozak & Piepho (2018) 

reasoned that some variation might be expected when 

using residuals plots and HT for checking 

assumptions.  The Shapiro-Wilk‟s test (Table 2) 

generally showed p>0.05. 

 

Table 2. Skewness, kurtosis and Shapiro-wilk test for normality of forage yield of harvest in 2021 and 2022. 

 N Skewness Kurtosis        Shapiro Wilk 

test 

 

Statistic Statistic Std. Error Statistic Std. Error Statistic Sig. 

2021 

Harvest 1 72 0.314 0.283 0.255 0.559 0.986 0.613 

Harvest 2 72 0.425 0.283 0.216 0.559 0.983 0.463 

Harvest 3 72 0.124 0.283 0.169 0.559 0.994 0.984 

2022 

Harvest 1 90 0.440 0.254 - 0.281 0.503 0.990 0.707 

Harvest 2 90 - 0.167 0.254 - 0.204 0.503 0.990 0.753 

Harvest 3 90 0.513 0.254 0.450 0.503 0.967 0.021 

Harvest 4 90 0.372 0.254 0.401 0.503 0.972 0.048 
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Fig. 2. Normal q-q plot of total forage yield per harvest in 2021 and 2022. 

 

2021 (a) 2022 (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variance homogeneity is checked by Levene’s  
fitted observations (Fig. 3), vs. clover component 

(Fig. 4), and vs. forage mixtures (Fig. 5).  Levene‟s 

declared a heterogeneous variance (p<0.05) in Year 1 

but homogeneous one (𝑝 > 0.05) in Year 2.  

Heterogeneity in Year 1 was disappointing enough to 

call for increasing blocks to 5 and harvests to 4 in 

Year 2.  Levene‟s test for harvests in Year 1 had a p 
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value >0.05 which all contradicted that of total yield.  

Each harvest‟s variance homogeneity is quite more 

informative to relate this to total yield‟s variance 

homogeneity.  In Year 1 (Fig. 3), the pattern of bands 

indicated that the residuals linearly increased to 

declare inconsistent variance, whereas in Year 2 the 

pattern (Fig. 3) indicated consistent variance. 

 

 Table 3. Levene's test of variance homogeneity of harvest and of total yield in 2021 and 2022. 

Subjects Effect F          df 1 df 2 Sig.   

  2021    

Harvest 1 1.721 17 54 .067  

Harvest 2 1.229 17 54 .275  

Harvest 3 .780 17 54 .707  

Total Harvest 1.900                   17 54 .038  

                                2022 

Harvest 1      .881 17 72 .597  

Harvest 2      .762 17 72 .729  

Harvest 3    1.171 17 72 .310  

Harvest 4   2.062 17 72 .018  

Total Harvest   1.463 17 72 .134  

 

Fig. 3. Standardized residuals vs. standardized predicted forage yield per harvest in 2021 and 2022.  

2021 (a) 2022 (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The bands in Figures 4 & 5 generally appear 

roughly rectangular (Fig. 4b), funneled (Figs 4b & 

Fig. 3.  
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5a), and had outliers (Fig. 4b &5b).  More increasing 

spread means increasing variance with the funnel 

shape.  Kim & Cribbie (2018) emphasized that if H0 

is rejected for variance test, a robust test should be 

adopted.  HT might inflate type-1 error vs nominal 𝛼 

(Zimmerman, 2004)Rasch et al., 2011).  HT usually 

results in poor power, since the aim is to fail to reject 

H0.  The power of identifying variance homogeneity 

is negatively related to group sizes even if 

differences are still the same Kim & Cribbie (2018).  

Our results (Table 3), quite the opposite, did not 

support their claim regarding group sizes since 

increasing replications led us to entertain H0, but we 

can‟t admit what the power was.  The authors used 

„hedging‟ statements regarding sample size.  

Unfortunately, based on their claim, unethical 

misconduct may manipulate HT by managing group 

sizes.  Altman & Bland (1995) hold that failing to 

reject H0 does not most likely verify what it 

hypothesizes but lack enough proof for rejecting.  

Ruscio & Roche (2012) assured that 𝛽 might be 

committed even under normality.  Moreover, HT of 

variance testing seldom maintains reasonable 1 − 𝛽 

to spot variations even raising nominal 𝛼 to most 

likely lead to unsatisfactory power.  

Neither of the aforementioned studies has 

suggested graphics to check variance heterogeneity.  

Kozak & Piepho (2018) supported graphics to 

explain what HT cannot, regarding outliers.  In ours, 

graphics indicated that violation in Year 1 cannot be 

overlooked.  We relied more on what graphic tools 

indicated.  Therefore, we abandoned discussing the 

ANOVA‟s F test for Year 1 (Table 4). Some studies 

(Zimmerman, 2006; Ruscio & Roche, 2012; Zhou et 

al., 2023) adopted exploring factors which might 

affect variance homogeneity, violation on type-1 

error and power and suggested remedies.   

The ANOVAs of the dry forage yield are shown 

(Table 4).  To test the adequacy of the fitted model, 

𝑅𝑑
2, were 0.4630 in Year 1 and 0.5105 in Year 2, both 

were below being acceptable.  The residual error not 

contributed to variation in the response is 𝜂2(𝑒𝑡𝑎2)  

which was 53.69% in Year 1 and 48.94 % in Year 2.  

Partial eta
2
, 𝜂𝑝

2 explains how any effect is ruled out 

(Levine & Hullett, 2002); Richardson, 2011; 

Norouzian & Plonsky, 2018).   

 

Table 4. Anova of clover cultivar component in forage yield, percentage mixture    and interaction in 2021 and 

2022.  

Tests Between Subjects Effects 

Source 
Type lll Sum 

of Squares 
df Mean Square F Sig. 

Partial Eta 

Squared 

        2021 

Block 6.202 3 2.067 9.724 0.000 0.364 

Cultivar 0.256 2 0.128 0.601 0.552 0.023 

Mix 1.017 5 0.203 0.956 0.453 0.086 

Cultivar * Mix 1.877 10 0.188 0.883 0.555 0.148 

Error 10.843 51 0.213    

       2022 

Block 4.520 4 1.130 2.783 0.033 0.141 

Cultivar 10.031 2 5.015 12.349 0.000 0.266 

Mix 5.705 5 1.141 2.809 0.023 0.171 

Cultivar * Mix 8.547 10 0.855 2.103 0.036 0.236 

Error 27.617 68 0.406    
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Fig. 4. Standardized residuals per clover cultivar in 2021 and 2022. 
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Fig. 5. Standardized residuals per mixture in 2021 and 2022. 

 

2021 (a) 2022 (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Repeated-Measures Model 

Variance homogeneity of repeated harvests need 

to be checked in the 2 yr.  Mauchly‟s W test criterion 

of sphericity (Table 5) is applied, given that 

normality holds.  Repeated measures ANOVA were 

robust with nonnormality and valid sphericity, 

despite extreme skewness and kurtosis.  Moreover, 

power did not decline with nonnormality (Blanca, 

Arnau, García-castro, et al., 2023). 

Moulton (2012) stressed that sphericity 

characterizes a state of both covariance and between-

levels variance homogeneity.  For small sample size 

(𝑛 < (𝑘 + 10)), however, W test lacks enough 

power for detecting deviation from sphericity.  

Moulton (2012) did not indicate whether the above 

inequality was mathematically or empirically based.  

Our samples were much > (𝑘 + 10) --72 and 90. 

Mauchly‟s W declared minor violation of sphericity 

in the 2 yr (𝑝 ≤ 0.048) (Table 5).  The closer W is to 

1.0, the less violation.  This dictated adjusting df, 

using either GG‟s 𝜀̂ or HF‟s 𝜀̃  --𝜀̂ is less biased for 

low ε, whereas 𝜀̃ is less biased for ε > 0.75 (Huynh & 

Feldt, 1976).  Thereby, HF is recommended: 𝜀̃ = 1.0 

with LB=(k-1)
-1

=0.50&0.33 in both yr.  Blanca et al. 

(2023a) recommend using GG for ϵ < 0.6 , and HF 

for ε ≥ 0.60.  Furthermore, the more violated 

sphericity, the more liberal F test but both corrections 

control inflated type-1 error. 
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Table 5. Mauchly‟s test for sphericity, greenhouse-geisser and huynh-feldt for forage yield within harvest in 2021 

and 2022.    

Within subjects' 

effect 

Mauchly's W Approx. Chi-

Square 

df Sig. Epsilon 

Greenhouse

-Geisser 

Huynh-

Feldt 

Lower-

bound 

2021 

Harvest 0.866 7.184 2 0.028 0.882 1.000 0.500 

2022 

Harvest 0.846 11.188 5 0.048 0.915 1.000 0.333 

 

Repeated-harvests main and interactions effects 

(Tables 6a & 7a), sphericity‟s adjusted df (Tables 6b 

& 7b). Pillai‟s Trace and Wilks‟ Lambda –one was 

closer to 1.0 and the other to 0.0-- for harvests, 

indicating it contributed relatively more, this was 

supported by high 𝜂𝑝
2 (85% in Year 1 and 91% in 

Year 2) (Tables 6a & 7a).  With minor violated 

sphericity, total dry forage yield substantially varied 

among harvests in both years (p<0.05) with HF‟s 𝜂𝑝
2 

of 69% and 73% in the 2 yr (Tables 6b & 7b).   

 

Table 6. Pillai‟s trace, wilks‟ lambda, ANOVA for within harvests and interactions for forage yield in 2021. 

a-   Multivariate Tests 

Effect  Value F 
Hypothesis 

df 

Error 

df 
Sig. 

Partial Eta 

Squared 

Harvest Pillai‟s Trace 0.855 147.936 2 50 0.000 0.855 

 Wilks‟ Lambda 0.145 147.936 2 50 0.000 0.855 

Harvest*Block Pillai‟s Trace 0.494 5.570 6 102 0.00 0.247 

 Wilks‟ Lambda 0.515 6.566 6 100 0.00 0.283 

Harvest * 

Cultivar 
Pillai‟s Trace 0.088 1.167 4 102 0.330 0.044 

 Wilks‟ Lambda 0.913 1.164 4 100 0.331 0.045 

Harvest * Mix Pillai‟s Trace 0.540 3.772 10 102 0.000 0.270 

 Wilks‟ Lambda 0.483 4.385 10 100 0.000 0.305 

Harvest * 

Cultivar * Mix 
Pillai‟s Trace 0.445 1.458 20 102 0.114 0.222 

 Wilks‟ Lambda 0.602 1.446 20 100 0.119 0.224 

b- Tests of Within-Subjects Effects 

Source  
Type lll Sum 

of Squares 
df 

Mean 

Square 
F Sig. 

Partial Eta 

Squared 

Harvest 
Sphericity 

Assumed 
24.921 2 12.461 111.574 0.000 0.686 

 Huynh-Feldt 24.921 2 12.461 111.574 0.000 0.686 

Harvest*Block 
Sphericity 

Assumed 
4.595 6 0.766 6.858 0.000 0.287 

 Huynh-Feldt 4.595 6 0.766 6.858 0.000 0.287 

Harvest * 

Cultivar 

Sphericity 

Assumed 
0.397 4 0.099 0.888 0.474 0.034 

 Huynh-Feldt 0.397 4 0.099 0.888 0.474 0.034 

Harvest * Mix 
Sphericity 

Assumed 
4.450 10 0.445 3.985 0.000 0.281 

 Huynh-Feldt 4.450 10 0.445 3.985 0.000 0.281 

Harvest * 

Cultivar * Mix 

Sphericity 

Assumed 
3.413 20 0.171 1.528 0.088 0.231 

 Huynh-Feldt 3.413 20 0.171 1.528 0.088 0.231 

Error 

(Harvest)                                     

 

Sphericity 

Assumed 
11.391 102 0.112   

 

 Huynh-Feldt 11.391 102 0.112    
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Table 7. Pillai‟s trace, wilks‟ lambda, ANOVA for within harvests and interactions for forage yield in 2022. 

a- Multivariate Tests 

Effect 
 

 
Value F 

Hypothesis 

df 
Error df   Sig. 

Partial Eta 

Squared 

Harvest Pillai‟s Trace 0.907 213.7 3 66 0.000 0.907 

 Wilks‟ Lambda 0.093 213.7 3 66 0.000 0.907 

Harvest*Block Pillai‟s Trace 0.473 3.185 12 204 0.000 0.158 

 Wilks‟ Lambda 0.577 3.370 12 174 0.000 0.168 

Harvest * Cultivar Pillai‟s Trace 0.364 4.977 6 134 0.000 0.182 

 Wilks‟ Lambda 0.659 5.103 6 132 0.000 0.188 

Harvest * Mix Pillai‟s Trace 0.466 2.500 15 204 0.002 0.155 

 Wilks‟ Lambda 0.581 2.644 15 182.598 0.001 0.165 

Harvest * Cultivar * 

Mix 
Pillai‟s Trace 0.417 1.098 30 204 0.341 0.139 

 Wilks‟ Lambda 0.637 1.078 30 194.399 0.367 0.140 

b- Tests of Within-Subjects Effects 

Source  
Type lll Sum 

of Squares 
df 

Mean 

Square 
F Sig. 

Partial Eta 

Squared 

Harvest 
Sphericity 

Assumed 
87.228 3 29.076 184.953 0.000 0.731 

 Huynh-Feldt 87.228 3 29.076 184.953 0.000 0.731 

Harvest*Block 
Sphericity 

Assumed 
7.630 12 0.636 4.045 0.000 0.192 

 Huynh-Feldt 7.630 12 0.636 4.045 0.000 0.192 

Harvest * Cultivar 
Sphericity 

Assumed 
5.193 6 0.866 5.506 0.000 0.139 

 Huynh-Feldt 5.193 6 0.866 5.506 0.000 0.139 

Harvest * Mix 
Sphericity 

Assumed 
6.660 15 0.444 2.824 0.001 0.172 

 Huynh-Feldt 6.660 15 0.444 2.824 0.001 0.172 

Harvest * Cultivar * 

Mix 

Sphericity 

Assumed 
5.125 30 0.171 1.087 0.355 0.138 

 Huynh-Feldt 5.125 30 0.171 1.087 0.355 0.138 

Error (Harvest)                                     

 

Sphericity 

Assumed 
32.070 204 0.157   

 

 Huynh-Feldt 32.070 204 0.157    

 

Generally, in forage trials, the final mean 

response is summed over harvests.  This is a rational 

practice, given controllable field management and 

variation; it might be a real problem otherwise.  

Inference based on this sum may obscure any 

variational differences, especially with increasing 

harvest number, the more repeated measures, the 

greater the violation of sphericity.  Not only did the 

main effect of harvests show tremendous differences 

but so did its first-order interactions.  It is worth 

mentioning that variations in forage yield were great 

due to harvest number given clover cultivars in the 

mixture, when harvests increased to 4.   

Temporal variation in forage yield is most likely 

to occur especially with varying percentage species 

in a mixture.  This variation may lead to violate 

sphericity but not necessarily makes repeated 

measures F test invalid.  Surprisingly, contrary to 

theory, sphericity though violated in this experiment 

was trivial.  This was initially based on HF 

correction reaching its maximum value, as if 

sphericity were not violated.   

ANOVA‟s F test should be conservatively 

applied since sphericity is likely violated.  Also, 

Mauchly‟s validity has been questioned for it is 

based upon failing to reject Ho to make type 2 error 

likely be committed.  Kim & Cribbie (2018) warned 

against Levene‟s test H0, causing a reduction of 

power.  Blanca et al. (2023a) reported that Mauchly‟s 

W, under non-normality, neither did it maintain type 

1 error nor was it sensitive to little violation of 

sphericity.  The authors doubt its validity as a 

„gatekeeper‟.  Moulton (2012) concluded that 

trivially violated sphericity (𝜀 > 0.70) declared by 

significant W, might result from large sample size.   

There have been innumerable diagnostic and 

judgmental tools testing violations of assumptions, 

especially sphericity violation‟s effects on both type 

1 error and power.  Unfortunately, studies have not 

been conducted in agronomy.  Hence, this gap calls 

attention to and to consider other statistical 

perspectives (e.g. MANOVA, Moulton (2012)).  The 

situation gets more complicated in the case of testing 

main and interaction effects using univariate repeated 

measures ANOVA; this is not fully understood by 
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researchers (Langenberg et al., 2023).  They 

suggested „Structural Equation Models‟ to handle 

sphericity or to relax its assumption. 
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