Biochemical Studies on Pomegranate

Nadia Y. A Attia.¹; Ibrahim M. Abd El - Aleem¹; Kareem M.K. El Tobgy² and Hala F. Mohamed²

1: Department of Biochemistry, Faculty of Agriculture, Moshtohor, Banha University.

2: Department of Medicinal and Aromatic Plants Research, Horticulture Research Institute, Agriculture

Research Center.

Abstract

Water, methanol and ethanol were used to extract total phenols, total tannins, anthocyanin, flavonoids and antioxidants activity from pomegranate peels (*Punica granatum* L) by using different methods. The obtained extracts and juice were used to study their antimicrobial effects against some Gram positive bacteria (*Staphylococcus aureus, Listeria monocytogenese, Bacillus megaterium* and *Bacillus cereus*), some Gram negative bacteria (*Escherichia coli, Klebsiella pneumonia* and *Salmonella typi*) and some fungi (*Aspergillus niger* and *Candida albicans*). Also, pomegranate juice and peel water extract were used to study their biological effects against diabetic and hypercholesterolemia in Wister rats. Water extract at 50°C for 20 min showed the highest capacity for extracting total phenols, total tannins, anthocyanin and total flavonoids compounds from dried pomegranate peels. Methanol extract at 50°C for 20 min recorded the highest antioxidant activity. All extracts recorded good inhibition for all the tested microorganisms. Administration of pomegranate juice and peel water extract induced significant decrement in blood serum glucose, triglycerides, total cholesterol, low density lipoprotein (LDL), urea, uric acid and creatinine in diabetic and hypercholesterolemia rats while, high density lipoprotein (HDL) elevated. Hematological parameters showed significant increment in white blood cells (RBC) and WBC showed significant increment.

Key words: pomegranate – antioxidant – antibacterial – lipid profile – liver functions

Introduction

The extraction of active compounds from plant materials is the first step in the utilization of phytochemicals in the preparation of dietary supplements, food ingredients and pharmaceuticals industries (Jin and Russell, 2010). It is generally known that the yield of chemical extraction depends on efficient methods for extraction, type of solvents with varying polarities, extraction time and temperature, as well as on the chemical composition and physical characteristics of the samples. Some previous researchers had reported that higher extraction yields of phenolic compounds were obtained with increasing solvent polarity (Moure et al., 2000 and Cheung et al., 2000). Also, Wissam et al. (2012) studied the effective extraction of polyphenols and proanthocyanidins from pomegranate peel. They found that the recovery of polyphenols and proanthocyanidins were the highest at 50 °C for 20 min. Water gave the highest extract yield of polyphenols and proanthocyanidins (17.78% and 1.22%). Also, they revealed that two sequential water extractions has the economic and safety merits, and can be used as an environmentally friendly method for producing antioxidants from the pomegranate peel.

Madrigal-Carballo *et al.* (2009) mentioned that tannins were the major phenolics in pomegranate peels, which were more readily dissolved in 50% methanol. A mixture of methanol, ethanol, acetone and water was found to be a better extractant of active phenolics from pomegranate. Also, **Tm** *et al.* (2010) stated that distilled water at 60°C extraction conditions was the best for extracting anthocyanin.

Wang *et al.* (2011) extracted phenols from pomegranate peels by different solvent and temperature conditions. They found the methanol and water gave the highest extract yield of total phenols followed by water and ethanol. Also, they revealed that water extraction, which has the economic and safety merits, can be used as an environmentally friendly method for producing antioxidants from the pomegranate peel. **Hadrich** *et al.* (2014) reported that the methanol and ethanol extracts of pomegranate peels showed the most potent antioxidant activity followed by water and acetone extracts.

Al-Zoreky (2009) reported that the methanolic extract of pomegranate fruit induced antibacterial activity against Listeria monocytogenes, aureus, Escherichia coli and Yersinia S. enterocolitica, Candida utilis, Saccharomyces cerevisiae and Aspergillus niger. Shaokat et al. (2007) reported that there was little difference between the activities of alcoholic extract and aqueous extract of pomegranate airl against seven bacteria (Bacillus megaterium DSM 32, DSM 9027. Pseudomonas aeruginosa Staphylococcus aureus Cowan 1, orynebacterium coli xerosis UC 9165, Escherichia DM. Enterococcus faecalis A10 and Micrococcus luteus LA 2971), and three fungi (Kluvyeromyces marxianus A230, Rhodotorula rubra MC12 and Candida albicans ATCC 1023). Also, they observed that the pomegranate aril extracts had antimicrobial

effects on all microorganisms, giving inhibition zones ranging in size from 13 to 26 mm. Fawole et al. (2013) studied the antibacterial activities of methanol and aqueous peel extracts of pomegranate Gram-positive (Bacillus subtilis and against Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia). They indicated that the methanolic peel extracts showed strong broad-spectrum activity against Gram-positive and Gram-negative bacteria. None of the aqueous extracts exhibited good antibacterial activity at the highest screening concentration (> 12.5 mg/ml). Hajoori et al. (2014) reported that Punica granatum peel water, ethanol, methanol, acetic acid and petroleum ether extracts had highly significant antimicrobial activity against four gram positive bacteria (Bacillus subtilis. Bacillus cereus. Staphylococcus aureus, Bacillus megaterium) and six strains of Gram negative bacteria (Escherichia coli, Salmonella typhi, Salmonella paratyphi Α. Salmonella paratyphi B, Proteus vulgaris and Pseudomonas aeruginosa). Aqueous, ethanol and methanol extracts were found to be more active towards the microorganisms tested than acetic acid and petroleum ether extracts. Salmonella typhi and Proteus vulgaris were reported to have significant susceptibility against most of the extracts. Phytochemical analysis of P. granatum peel showed the presence of alkaloids, flavanoids, steroids, tannin, glycosides and terpenoids.

Bagri et al. (2009) found that the administration of pomegranate aqueous extract at doses of 250 mg/kg and 500 mg/kg for 21 days caused significant reduction in fasting blood glucose, cholesterol, triglycerides and LDL cholesterol in compression with diabetic group induced by sterptozotocin. Radhika et al. (2011) reported that Punica granatum had antidiabetic and hypoglycemic activity of rats treated with alloxan. Administration of crude powder Punica granatum reduced the concentration of glucose, triglycerides, cholesterol, LDL cholesterol, vLDL cholesterol and raised the level of HDL cholesterol of both normal group and diabetic treated group. Osman et al. (2012) concluded that diabetic rats treated with pomegranate peel and juice showed decrement in glucose, alpha amylase, triglycerides, total cholesterol, LDL cholesterol AST and ALT levels. While, HDL cholesterol and insulin level elevated. Bhandary et al. (2013) stated that orally administration of ethanolic extracts of Punica granatum whole fruit and seeds (2000 mg/kg body weight) in Swiss albino rats showed that the total cholesterol, LDL and HDL levels recorded moderate non-significant increment triglyceride level recorded moderate while decrement comparing with control. Total Protein and bilirubin, albumin and serum biomarkers of liver (ALT and AST), kidney (creatnine, uric acid and urea), hematological parameters ((RBC, WBC, Hb,

and Platelet Count) did not record any significant alteration.

The aim of this investigation is to study the best method for extracting the antioxidants of pomegranate peel; evaluate pomegranate juice and peel extracts as antimicrobial effects and evaluate pomegranate juice and peel water extract as biological effects on diabetic and hypercholesterolemia rats.

Plant Material

Pomegranate was obtained from Horticulture Research Institute, Agriculture Research Center, Giza, Egypt (August 2013). Pomegranate fruit skins were cleaned, dried and ground to fine powders.

Proximate analyses

Moisture, ash, crude protein, crude fiber and total lipids contents were determined in pomegranate juice and peel according to **A.O.A.C.** (2005). Total hydrolysable carbohydrate was determined according to **Dubois** *et al.* (1956).

Extraction methods

Water, methanol and ethanol were used at 25°C for 24h, at 50°C for 20 min and by using Soxhelt apparatus in addition, boiling water for 5, 10, 20 min were used to identify the most suitable solvent for the extraction of total polyphenols, total tannins, anthocyanin, flavonoids and antioxidant. All extracts were then passed through filter paper and dried in oven at 50°C.

Chemical composition

Total polyphenols content was estimated by the Folin-Ciocalteu method reported by **Elfalleh** *et al.* (2009). Hydrolysable tannins content was determined by the method of **Çam and Hişil (2010)**. Total anthocyanin content was determined according to **Elfalleh** *et al.* (2011) and **Çam** *et al.* (2009). The amount of total flavonoids in the extracts was measured spectrophotometrically by the method of **Djeridane** *et al.* (2006). The scavenging activity on DPPH radical of different extracts was determined according to the method reported by **Okonogi** *et al.* (2007).

Microbial studies

Bacterial and fungal isolates

Clinical isolates of *E*.*coli* NRRL B/210, *Staph. aeureus* NRRL B/3 B, *Bacillus cereus* NRRL B/G 43, *Bacillus megtarin* NRRL B/1366, *Listeria monocytogenase* serotype NRRL Y/477, *Klabsila pneumonia* ATTCC700603, *Candida albicans* NRRL Y/477, and *Aspergillus niger* NRRL/3 and *Salmonella typhi* ATTC5647006. were obtained from Department of chemistry of Natural and Microbial product, National Research Center, and were kept in the laboratory in the frozen state until used.

Antimicrobial activity

Pomegranate juice and peel extracts were sterilized by using finally filter sterilization 0.2 μ m filter (Millipore) and stored in sterile vials. The antimicrobial effect of the pomegranate juice and peel extracts were evaluated using disk inhibition zone by the method described by **Orak** *et al.* (2011).

Biological evaluation of water extract and juice. a. Experimental animals.

A total of 45 of adult's male albino rats (Wister Strain) weighed each of them 200 g

approximately were obtained from Organization of Biological Products and Vaccines from Helwan breeding farm, Cairo, Egypt. The rats were housed in stain lasted cages with wire mesh bottoms in a room temperature maintained at 25 °C \pm 2°C. Rats were kept under normal healthy conditions for one week and fed on basal diet. The diet contained Casein 10%, Corn oil 10%, Salt mixture 4%, Vitamin mixture1%, Cellulose 5% and starch 70% (**Reeves** *et al* **1993**).

Dosage and administration of decoction: The decoction was administered at a dosage of 3 ml/kg/day of pomegranate juice and 200 mg/kg/day of pomegranate peel water extract (**Abdel Moneim** *et al* **2011**), using a Sondi needle by gastric gavage method (**Iddamaldeniya** *et al* **2006**). After that the rats were divided into three main groups 15 rats each. The first main group (control) was divided into three subgroups (5 rats each) the first (control) was fed on basil diet for another 6 weeks. The second group was fed on basil diet and administered of pomegranate juice. The third was fed on basil diet and administered of pomegranate peel water extract.

The second main group was the diabetic group. The rats were injected with a single dose of alloxan solution 150 mg\kg body weight (**Buko** *et al* **1996**). After 24hours of alloxan injection, diabetes was confirmed (glucose blood was higher than 180 mg/dl). Rats were left for one week for stabilize diabetes, and then rats were divided into three subgroups. The first (control diabetic) was fed on basil diet for another 6 weeks. The second was fed on basil diet and administered of pomegranate juice. The third was fed on basil diet and administered of pomegranate peel water extract.

The third main group was hypercholesterolemia group. The rats were fed on high fat diet similar to the control diet but differed in more fat content which was 10% sheep fat, 2% cholesterol and 0.25% bile salts and starch 57.75% for 2 weeks (Abdel-Rahim *et al* 2013), then was divided into three subgroups. The first (hypercholesterolemia control) was fed with basil diet for another 6 weeks. The second was fed on basil diet and administered of pomegranate juice. The third was fed on basil diet and administered of pomegranate peel water extract.

Blood sample

At the end of experiment blood was collected in tubes from retro-orbital vein in two separated tubes, one tube with EDTA (ethylene diamine tetra acetic acid) for the determination of hematological parameter and the other was centrifuged at 3000 rpm for 20 min, for serum preparation.

Serum analysis

Serum parameters were determined by enzymatic colorimetric methods, glucose was determined according to the procedure of Trinder (1969). Serum triglyceride and total cholesterol were determined according to the methods of Fossati and Prencipe (1982) and Allain et al. (1974). Low density lipoprotein (LDL-cholesterol) and high density lipoprotein (HDL- cholesterol) were determined according to the method of Tietz (1976 a). Serum total bilirubin, total protein and albumin were determined according to the method of Walters and Gerarde (1970), Vassault et al. (1986) and Young et al. (1975). Alkaline phosphatases (ALP) was determined according to the methods of Young et al. (1972). Serum aspartate transferease (AST) and alanine transferease (ALT) activities were measured colorimetrically according to the method of Tietz (1976 b). Serum urea, uric acid and creatinine were determined according to Tietz (1990), Vassault et al. (1986) and Tietz (1986).

Heamatology

The red blood cells (RBC), white blood cells (WBC) counts, and the hemoglobin (Hb) were determined in Mindray 2800 hematology analyzer.

Statistical analysis.

Statistical analysis was done by Duncan's Methods (SAS, 1996).

Results and discussion

Chemical composition

Data concerning pomegranate peel and juice chemical composition are shown in Table (1).

 Table 1. Chemical composition of pomegranate peel and juice.

Constituents	Pomegranate peel based on dry weight (%)	Pomegranate juice based on fresh weight
		(%)
Moisture	5.03	86.60
Crude fiber	10.40	
Ash	2.15	0.42
Crude protein	2.59	0.13
Total lipid	1.80	0.06
Total carbohydrate	79.08	13.35

Pomegranate peels (dry weight) consist of 5.03 % moisture, 10.40% crude fiber, 2.15% ash,

2.59% crude protein, 1.80% total lipid, 79.08% total carbohydrates.

Data concerning crude fiber and total carbohydrate are in agreement with those reported by **Rowayshed** *et al.* (2013). Data of pomegranate juice show that the juice consisted of 86.6, 0.42, 0.13, 0.06 and 13.35% moisture, ash, crude protein, total lipid and total carbohydrates respectively. Similar

results were obtained by **Ramadan** *et al.* (2010) for moisture, ash, protein, and carbohydrate.

Extraction.

Data in Table (2) show the effect of extraction methods on the total phenols, total tannins, anthocyanin, total flavonoids and antioxidants activity.

Table 2 Effect of different extraction methods on total phenols, total tannins, anthocyanin, total flavonoids and antioxidants activity.

antioxidants activity.						
Extraction methods	Total phenols g/100g	Total tannins g/100g	Anthocyanin mg/100g	Total flavonoids mg/100g	Antioxida activity %	
Water extract at 25°C for 24h	$4.28c \pm 0.19$	$1.36a \pm 0.15$	$73.60b \pm 2.69$	$39.15b \pm 1.41$	78.41c 1.55	±
Methanol extract at 25°C for 24h	$4.60c\pm0.29$	1.13b± 0.06	$49.49c \pm 1.68$	35.75bc ± 2.26	87.88ab 2.5	±
Ethanol extract at 25°C for 24h	3.38d ±0.28	$0.95c\pm 0.07$	$41.94e \pm 1.6$	$31.04d\pm1.01$	87.21b 1.37	Ŧ
Water extract at 50°C for 20 min	$6.72a\pm0.28$	$1.37a \pm 0.12$	86.19a ± 2.25	43.48a ± 3.72	80.85b 1.49	±
Methanol extract at 50°C for 20 min	5.85b ± 0.21	$1.29a \pm 0.08$	48.30d ± 1.57	38.51bc ± 2.50	90.58a 2.86	±
Ethanol extract at 50°C for 20 min	$4.65c \pm 0.18$	$1.16b \pm 0.12$	$38.55g \pm 1.47$	37.76bc ±	86.39b 1.40	±
Boiling water for 5min	$2.761e \pm 0.15$	$0.74d \pm 0.01$	$40.57f \pm 1.71$	$28.87d\pm0.54$	74.90d 1.42	±
Boiling water for10 min	$1.81f \pm 0.15$	0.68de ±0.02	$37.04h \pm 1.75$	$25.68e \pm 2.60$	71.04e 2.03	±
Boiling water for 20min	$1.23g \pm 0.07$	$0.53f \pm 0.05$	$32.30i\pm1.24$	$21.31f \pm 0.61$	60.78f 1.39	±
Water Soxhlet extract	$1.02g\pm0.05$	$0.41g\pm0.02$	$14.75k \pm 1.02$	$10.26h \pm 0.31$	55.62g 1.20	±
Methanol Soxhlet extract	$1.43g \pm 0.07$	0.61ef ±0.03	$15.63j\pm0.91$	$17.88g \pm 0.68$	72.41de 2.50	±
Ethanol Soxhlet extract	$1.17g \pm 0.04$	$0.58f \pm 0.02$	$15.62j \pm 1.20$	$11.88h \pm 1.12$	71.61e ± 0	3.4

a,b,c,....k means within column with different letters differ significantly ($p \le 0.05$) from each other means followed by the same letter don't differ at 0.05 probability level.

The obtained results indicate that water extract at 50° C for 20 min followed by methanol extract at 50° C for 20min recorded the highest extraction of total polyphenols. Total tannins recorded the highest value in water extracts at 50° C for 20min and at 25 °C for 24 h followed by methanol extract at 50 °C for 20 min. Water extract at 50 °C for 20 min and at 25 °C for 24 h showed the highest capacity for extracting anthocyanin. Total flavonoids recorded the highest value in water extracts at 50 °C for 20 min and at 25 °C for 24 h followed by methanol, ethanol extracts at 50 °C for 20 min and at 25 °C for 24 h followed by methanol, ethanol extracts at 50 °C for 20 min and at 25 °C for 20 min. Antioxidant showed the highest activity in methanol extract at 50 °C for 20 min and at 25°C for 24 h followed by ethanol extract at 50 °C for 20 min and at 25°C for 24 h followed by ethanol extract at 50 °C for 20 min and at 25°C for 24 h followed by ethanol extract at 50 °C for 20 min and at 25°C for 24 h followed by ethanol extract at 50°C for 20 min and at 25°C for 24 h followed by ethanol extract at 25°C for 24 h.

Increasing water boiling time caused significant decrement in total polyphenols, total tannins,

anthocyanin, total flavonoids and antioxidant activity. Soxhlet extracts showed the lowest extraction efficiency.

It could be conculated that water at 50°C for 20 min was the best solvent for extracting total phenols, total tannin, total anthocyanin and total flavonoids.

The obtained results are in agreement with those obtained by Noda *et al.* (2002), Hohnov *et al.* (2008), Madrigal-Carballo *et al.* (2009), Wang *et al.* (2011) and Orak *et al.* (2012). Al-Rawahi *et al.* (2013) reported that the polyphenols of the pomegranate are relatively polar compounds, where hydrogen bonds, dipole–dipole, and electrostatic interactions may contribute to their strong solubility in polar solvents, water as the highest polar solvent, as it extracted the highest phenolic compounds followed by methanol and ethanol.

Antimicrobial effects:-

Antimicrobial effects of pomegranate peel extracts and juice:

Effect of pomegranate peel extracts and juice on some Gram positive bacteria:

Table (3) show the antimicrobial effect of various pomegranate peel extracts and juice against some Gram positive bacteria; Staphylococcus aureus, Listeria monocytogenese, Bacillus megaterium and Bacillus cereus.

Staphylococcus aureus

Results show that ethanol extract at 50 °C for 20 min, boiling water extract for 5 min and methanol extract at 50 °C for 20 min had the highest inhibition activity. Pomegranate juice had no antimicrobial activity.

Listeria monocytogenese

Methanol extract at 50°C for 20 min showed the inhibition zone followed by methanol highest Soxhelt extract. Pomegranate juice had no antimicrobial activity.

Bacillus megaterium:

Methanol extracts at 50°C for 20 min and at 25°C for 24h had the highest inhibition zone 24.33 and 23.17 mm. Pomegranate juice recorded 17.17mm inhibition zone.

Bacillus cereus

Methanol and ethanol extracts at 50°C for 20 min and methanol extract at 25 °C for 24 h showed the highest antimicrobial effect. Water extract at 50°C for 20 min showed 24.50 mm inhibition zone. Pomegranate juice recorded 13.67 mm inhibition zone.

These results are in agreement with those reported by Khan and Hanee (2011), Dahham et al. (2010), Orak et al. (2011) and Hajoori et al. (2014).

Effect of pomegranate peel extracts and juice on some Gram negative bacteria

Data present in Table (4) show the effect of various pomegranate peel extracts and juice against some Gram negative bacteria (Escherichia coli, Klebsiella pneumonia and Salmonella typi).

Escherichia coli

Methanol extract at 50°C for 20 min and boiling water extract for 5 min recorded the highest inhibition zone (21.50 and 20.83mm). Pomegranate juice recorded 13.83mm inhibition zone.

Klebsiella pneumonia

Methanol and ethanol extracts at 50°C for 20 min, recorded the highest inhibition zone (32.00 and 31.33 mm). Pomegranate juice antimicrobial activity was 26.17mm.

Salmonella typhi :

Methanol extracts at 50°C for 20 min and at 25°C for 24h showed the highest inhibition zones and the recorded means were 22.67 and 21.00mm. Pomegranate juice antimicrobial activity recorded 13.83mm.

The obtained results are in agreement with those reported by Perez and Anesini (1994), Al-Zoreky (2009), Orak et al. (2011) and Hajoori et al (2014).

Mean time, AlFadel et al (2014) reported that pomegranate ethanol extract showed antimicrobial effect while, pomegranate water extract had no antimicrobial activity

Effect of pomegranate peel extracts and juice on some fungi

Data in Table (5) present the effect of pomegranate peel extracts and juice against some fungi (Aspergillus niger and Candida albicans). Aspergillus niger :

Methanol extracts at 25°C for 24hr and at 50° C for 20 min had the highest inhibition zones followed by ethanol extract at 50 C° for 20 min Pomegranate juice recorded 12.83mm.

Candida albicans :

Methanol extract at 50°C for 20 min had the inhibition zone followed by methanol, highest ethanol extracts at 25°C for 24hr. Pomegranate juice antimicrobial activity recorded 17.5mm inhibition zone.

The obtained results are in agreement with those reported by Al Zoreky (2009) and Dahham et al (2010).

Biological effects:-

Data concerning the effect of pomegranate juice and peel water extract on blood serum glucose and lipid profile are shown in Table (6).

In diabetic and hypercholesterolemia groups there was significant increment in glucose level comparing with control group. Administration with pomegranate juice and peel water extract caused significant decrement in serum glucose levels in diabetic and hypercholesterolemia groups.

The obtained results are in agreement with those obtained by Radhika et al. (2011) and Osman et al. (2012).

Treatments		Staph. Aureu	s	Listeria mo	onocytogene.	se	Bacillus meg	aterium		1	Bacillus cerei	us
				Inhibition z	zone (mm)							
	20µ	40µ	Mean	20µ	40µ	mean	20µ	40µ	mean	20µ	40µ	Mean
Water extract at	12.67hi	20.00bd	16.33DE	16.33kl	20.67dh	18.50E	14.33h	24.0b	19.17C	18.33ef	30.00a	24.17BC
25°C for 24h	± 0.58	± 2.89		± 1.8	± 1.80		± 1.53	± 1.00		± 3.61	± 4.00	
Ethanol extract at	14.67fh	21.33bc	18.00CD	17.32ik	22.33af	19.80CE	16.0fi	27.0a	21.50B	19.0df	25.67bc	22.33C
25°C for 24h	± 2.31	± 2.08		± 2.31	± 4.18		± 1.9	± 3.9		± 1.15	± 0.58	
Methanol extract at	12.0hi	19.00cd	15.50EF	21.00cg	22.00bf	21.50BC	20.33cd	26.0ab	23.17AB	22.0d	28.67ab	25.30B
25°C for 24h	± 1.15	± 2.5		± 3.58	± 3.70		± 2.00	± 2.58		± 2.8	± 1.15	
Water extract at	14.33gi	22.33ab	18.33C	19.67fj	23.00ad	21.33BD	16.33ei	26.67ab	21.50B	21.0de	28.00ac	24.50BC
50°C for 20 min	± 1.5	± 1.15		± 2.08	± 2.00		± 3.46	± 1.15		± 2.52	± 1.15	
Ethanol extract at	17.33df	24.67a	21.00A	18.67jk	23.33ad	21.00BD	16.67dg	26.00ab	21.83B	21.00de	30.00a	25.50B
50°C for 20 min	± 1.15	± 2.31		± 2.31	± 2.65		$\pm 4.00^{-1}$	± 4.58		± 4.81	± 2.08	
Methanol extract at	13.67gi	24.33a	19.02BC	23.67ac	25.00a	24.33A	20.67c	28.00a	24.33A	25.33c	30.33a	27.83A
50°C for 20 min	± 2.7	± 2.52		± 4.73	± 5.41		± 1.58	± 1.84		± 2.00	± 4.00	
Boiling water for 5	19.00cd	22.67ab	20.83AB	18.00hk	22.67ae	20.33BE	17.69dg	19.00ce	18.33CE	14.33gi	16.33fg	15.33D
min	± 1.00	± 3.6		± 1.98	± 1.53		± 1.50	± 2.00		± 1.58	± 2.52	
Boiling water	14.00gi	15.67eg	14.83EF	11.33m	17.33ik	14.33F	15.00gi	16.67eh	15.83F	12.67ij	15.00gi	13.33DE
for10 min	± 1.50	± 0.58		± 1.5	± 1.73		± 2.00	± 1.00		± 1.16	± 1.53	
Boiling water for	12.33hi	15.67eg	14.00F	11.33m	13.00n	12.17G	12.0jk	15.00gi	13.50G	12.33ij	15.00gi	13.67DF
20 min	± 2.00	± 2.08		± 1.00	± 2.90		± 0.58	± 2.08		± 2.53	± 1.53	
Water Soxhlet	11.67i	17.33df	14.50EF	14.00lm	17.00jk	15.50F	11.67k	13.67ik	12.67G	11.0j	14.67gi	12.83E
extract	± 2.53	± 3.58		± 3.5	± 4.60		± 2.52	±1.53		± 1.73	± 1.25	
Ethanol Soxhlet	13.67gi	17.67de	15.67EF	17.0jk	21.67bf	19.33DE	15.33fi	18.00cf	16.60EF	12.67ij	16.00fh	14.33DE
extract	± 1.7	± 2.8		± 2.40	± 1.79		± 1.37	± 1.06		± 1.14	± 0.33	
Methanol Soxhlet	17.33df	19.00cd	18.17CD	20.00ei	24.33ab	22.17B	17.67dg	19.67cd	18.67CD	13.00hj	16.00fh	14.50DE
extract	± 1.53	± 1.07		± 2.00	± 1.98		± 1.53	±2.06		± 1.50	± 1.00	
Pomegranate juice	0.00j	0.00j	0.00G	0.00n	0.00n	0.00H	14.67hj ± 2.65	19.67cd ± 3.15	17.17DF	12.67ij ± 1.48	14.67gi ± 1.37	13.67DI
Mean conc.	13.28B	18.44A		16.03B	19.41A		16.1B\	21.49A		16.56B	21.56A	

 Table 3. Effect of pomegranate peel extracts and juice on some Gram positive bacteria.

a,b,.....n means within column with different letters differ significantly ($p \le 0.05$) from each other means followed by the same letter don't different the 0.05 probability level.

Treatments		E. coli		Klebsiella pne	umonia		S	almonella typh	
-				inhibition zone	e (mm)				
-	20µ	40µ	Mean	20µ	40μ	Mean	20µ	40μ	mean
Water extract at 25°C for	11.73jk	22.67b	17.20D	17.67ln	20.67hj	19.17F	12.67hi±1.8	18.33d	15.50FG
24h	± 1.50	± 2.54		±2.53	±2.51			± 2.89	
Ethanol extract at 25°C for	12.67ik	22.00b	17.33D	18.33jm	22.33fh	20.33EF	14.33gh	22.67bc	18.50DE
24h	± 1.50	± 4.19		± 1.50	± 2.89		± 2.31	± 2.08	
Methanol extract at 25°C for	13.33hk	22.00b	17.67CD	19.33im	25.67de	22.50D	17.67de	24.33b	21.00B
24h	± 0.58	± 3.80		± 2.20	± 1.74		± 1.15	±3.15	
Water extract at 50°C for 20	12.67ik	17.33df	15.90F	25.33de	30.00b	27.67B	15.67eg	21.67c	18.67D
min	± 1.15	± 2.76		± 4.70	± 1.73		± 1.16	± 2.00	
Ethanol extract at 50°C for 20	15.67fh	23.33b	19.50BC	27.0cd	35.67a	31.33A	16.76df	24.33b	20.53BC
min	± 2.40	± 3.51		± 1.15	± 2.67		± 2.15	± 2.31	
Methanol extract at 50°C for	14.67fi	28.33a	21.50A	29.67b	34.33a	32.00A	17.33df	28.0a	22.67A
20 min	± 2.60	± 3.00		± 3.70	± 5.8		± 2.33	± 3.50	
Boiling water for 5min	17.67de	24.00b	20.83AB	20.33hk	23.67eg	22.00DF	17.00df	21.33c	19.17CD
	± 3.70	± 2.65		± 1.53	± 3.79		± 1.00	± 2.08	
Boiling water for10 min	14.67fi	17.67de	16.17DE	19.33im	20.33hk	19.83F	13.00hi	15.67eg	14.33GH
	± 2.90	±1.56		± 1.73	± 3.06		± 1.53	± 2.00	
Boiling water for 20min	10.67k	13.67gj	12.17G	18.03km	21.33gi	19.67F	11.33i	15.33fg	13.33H
	± 2.08	± 0.50		± 4.16	± 4.46		± 2.10	± 2.08	
Water Soxhlet extract	12.33ik	14.00gj	13.17FG	15.33n	17.00mn	16.17G	11.67i	14.00gh	12.83H
	± 1.73	± 1.50		± 5.77	± 3.7		±2.53	± 0.58	
Ethanol Soxhlet extract	16.00eh	19.00cd	17.50D	19.67il	24.33ef	22.00DE	15.33fg	18.67d	17.00EF
	± 1.80	± 1.15		± 1.14	± 1.96		± 2.00	± 3.50	
Methanol Soxhlet extract	18.33de	21.67bc	20.02AB	21.33gi	28.33bc	24.83C	17.67de	23.33bc	20.50BC
	± 1.53	± 2.60		± 1.53	± 2.08		± 1.50	± 3.87	
Pomegranate juice	13.33hk	16.33dg	13.83EF	23.67eg	28.67bc	26.17BC	12.33hi	15.33fg	13.83H
	± 1.82	± 2.50		± 2.08	± 4.8		± 3.00	± 2.31	
Mean conc.	14.13B	20.15A		21.50B	25.56A		14.82B	20.23A	

Table 4. ect of pomegranate peel extracts and juice on some Grame negative bacteria.

a,b,c,....n means within column with different letters different significantly ($p \le 0.05$) from each other means followed by the same letter don't differz at 0.05 probability level.

Table 5. Effect of pomegranate peel extracts and juice on some fungi

Treatments		Aspergillus niger		Candida albicans		
	i	nhibition zone (mm)				
	20µ	40μ	Mean	20μ	40μ	Mean
Water extract at 25°C for 24h	11.0b	21.3dg	16.17C	$25.67 ik\pm\ 0.58$	30.0cf	27.83D
	± 1.15	± 1.52			± 1.52	
Ethanol extract at 25°C for 24h	19.67fi ±2.08	24de ±2.3	21.83B	29.0eh	33.0ab	31.0BC
				± 5.72	± 4.70	
Methanol extract at 25°C for 24h	22.67df	31.76a	27.17A	29.0eh ± 0.76	33.33ab	31.17B
	±0.50	± 1.90			± 1.67	
Water extract at 50°C for 20 min	18.67gj ±1.51	23df	20.83B	26.67ji	31.33be	29.00CD
		± 1.50		± 1.50	± 2.72	
Ethanol extract at 50°C for 20 min	$20.67 \text{eh} \pm 1.15$	30.0ab	25.33A	29.33eh	32.33bc	30.83BC
		± 1.15		± 2.30	± 3.40	
Methanol extract at 50°C for 20 min	24.33cd ±2.63	26.0bc	25.50A	32.0bd	35.33a	33.67A
		± 2.60		± 1.00	± 2.95	
Boiling water for 5min	15.33jn ±1.15	17.67hk	16.50C	23.33ln	26.33hj	24.33E
		± 1.52		± 1.52	± 1.53	
Boiling water for 10 min	13.33 mq ± 2.08	15.33jn	14.33CD	18.67op	21.33lo	20.00G
		$=\pm 1.70$		± 1.57	± 2.33	
Boiling water for 20min	$10.33q \pm 0.57$	12.33nq	11.33E	17.33p	20.33no	18.83GH
		± 1.00		± 2.3	± 3.50	
Water Soxhlet extract	12.0nq ±0.58	13.33mq	12.67DE	16.33pq	20.67mo	18.50GH
		± 2.08		± 3.20	± 1.50	
Methanol Soxhlet extract	13.67nq ±2.08	14.67ko	14.17CD	20.67mo	23.67jl	22.17F
		± 2.80		± 2.10	± 2.42	
Ethanol Soxhlet extract	16.0jm ±1.00	17.0 il	16.50C	23.33km	27.67fi	25.50E
		± 5.03		± 0.57	±3 .13	
pomegranate juice	11.330q ±2.40	14.33kp	12.83DE	13.67q	$21.33lo \pm 2.60$	17.50H
		± 2.12		± 1.80		
Mean conc.	16.08B	20.11A		23.38B	27.44A	

a,b,c,.....q means within column with different letters differ significant ($p \le 0.05$) from each other means followed by the same letter don't differ at 0.05 probability level.

Groups	Blood serum glucose mg/dl	Triglyceride (mg/dl)	Total cholesterol (mg/dl)	LDL (mg/dl)	HDL (mg/dl)
Control Basal diet	81.09ce ± 11.00	$61.46df \pm 4.0$	$100.30e \pm 5.9$	$39.25f \pm 1.60$	45.45 bd ± 1.12
Basal diet + Pomegranate juice	58.47e ± 7.38	$53.62 \text{eg} \pm 3.63$	$95.84f\pm4.33$	$35.02eg\pm2.30$	$47.13bd \pm 1.48$
Basal diet + Pomegranate peel extract	53.80e ± 13.07	$49.37g \pm 6.45$	$87.54 \text{fg} \pm 4.50$	$32.54 fg \pm 0.97$	$49.30a\pm1.62$
Diabetic control group + Basal diet	420.10a ± 86.32	$91.87b \pm 7.69$	$131.60b\pm7.55$	$68.24c \pm 1.70$	$29.03g\pm0.97$
Diabetic +Basal diet + pomegranate juice	123.80b ± 25.14	63.98de ± 3.28	$122.73c \pm 5.70$	$49.77 ef \pm 0.83$	$45.86bd \pm 1.00$
Diabetic + Basal diet + pomegranate peel extract	110.33 bc ± 10.46	$50.46 fg \pm 4.28$	108.50de ±6.80	$48.86eg \pm 1.09$	$46.64bd\pm2.60$
Hypercholesterolemia control group + Basal diet	$102.00bd \pm 16.40$	$121.65a \pm 16.67$	$157.85a \pm 4.78$	$109.00a \pm 3.40$	$29.77g\pm1.90$
Hypercholesterolemia + Basal diet + Pomegranate juice	61.91e ± 9.32	$76.42c \pm 3.21$	$137.20b \pm 4.95$	$87.60b \pm 2.50$	36.05eg ± 1.51
Hypercholesterolemia + Basal diet + Pomegranate peel extract	$60.42e \pm 9.90$	$59.61 \text{eg} \pm 5.40$	$131.66b \pm 2.48$	$69.57c \pm 1.03$	43.43ce ± 1.33

Table 6. Effect of orally intake pomegranate juice and peel water extract on serum glucose and lipid profile.

a,b,c,..g means within column with differ letters different significantly ($p \le 0.05$) from each other means followed by the same letter don't differ at 0.05 probability level. Each value represents the mean of 5 rats ± S.E. Also, data in Table (6) show that administration of pomegranate juice and peel water extract caused significant decrement in triglycerides, total cholesterol and LDL. High density lipoprotein (HDL) showed significant increment in the diabetic group and hypercholesterolemia group administrated with pomegranate water extract comparing with diabetic and hypercholesterolemia control groups. The obtained results are in agreement with those reported by **Radhika** *et al.* (2011) and **Abdel-Rahim** *et al.* (2013).

Data in Table (7) show the effect of orally intake pomegranate peel water extract and juice on serum bilirubin, protein, albumin, AST, ALT and ALP.

· · · ·	Total	Total	Albumin	AST	ALT	ALP
Groups	Bilirubin	protein	(g/dl)	(U/L)	(U/L)	(U/L)
Croups	(mg/dl)	(g\l)				
Control Basal diet	0.902b	6.95d	2.78e	24.85fg	34.09gh ±	84.06df
Control Dasar dict	± 0.14	± 0.91	± 0.26	± 2.93	1.19	±4.6
Basal diet +	1.70ab	6.574d	2.95be	22.10g	31.28hi	83.09df
Pomegranate juice	± 0.13	± 0.52	± 0.42	± 1.80	± 2.59	± 2.6
Basal diet +	1.67ab	6.57d	2.97de	23.54gf	29.97i	77.60f
Pomegranate peel	± 0.11	± 0.75	± 0.57	± 1.24	± 3.00	± 3.62
extract						
Diabetic control group + Basal	2.10a	6.93d	3.51be	43.53b	66.83b	98.69c
diet	± 0.08	± 0.91	± 0.41	± 4.93	± 3.19	± 5.67
Diabetic +Basal diet +	1.64ab	6.82d	3.05ce	37.64d	54.15e	87.43de
pomegranate juice	± 0.08	± 0.27	± 0.43	± 3.13	± 1.52	± 4.25
Diabetic + Basal diet +	1.716ab	6.59d	3.66bd	32.76e	48.26f	79.97ef
pomegranate	± 0.08	± 0.75	± 0.65	± 1.34	± 1.60	± 2.95
peel extract						
Hypercholesterolemia control	2.53a	9.60a	4.53a	56.26a	77.26a	147.30a
group + Basal diet	± 0.23	± 0.42	± 1.11	± 1.45	± 4.90	± 8.45
Hypercholesterolemia + Basal	1.70ab	7.02cd	3.457be	37.12d	59.85cd	114.60b
diet +	± 0.27	± 0.57	± 0.70	± 1.77	± 2.50	± 3.43
Pomegranate juice						
Hypercholesterolemia + Basal	1.91ab	7.75bc	3.45be	35.29de	57.17de	112.50b
diet +	± 0.06	± 0.83	± 0.33	± 1.32	± 1.10	± 2.60
Pomegranate peel extract						

a,b,c,..f means within column with differ letters different significantly ($p \le 0.05$) from each other means followed by the same letter don't differ at 0.05 probability level.

Each value represent the mean of 5 rats \pm S.E.

Diabetic groups had non significant change in total bilrubin, total protein and albumin and showed significant decrement in AST, ALT and ALP comparing with diabetic control group.

Hypercholesterolemia groups showed significant reduction in total protein, albumin, AST, ALT and ALP comparing with hypercholesterolemia control group.

The obtained results are in agreement with those reported by Osman *et al.* (2012) and Bhandary *et al.* (2013).

Kidney functions

Data concerning the effect of orally intake pomegranate juice and peel water extract on kidney functions are shown in Table (8).

Diabetic and hypercholesterolemia groups had significant increment in urea, uric acid and creatinine comparing to control group fed on basal diet. Administration of pomegranate juice and peel water extract showed significant decrement in these parameters comparing with diabetic and hypercholesterolemia control groups .

The obtained results are in agreement with those reported by (Abdel-Rahim *et al* 2013) and Bhandary *et al.* (2013).

Effect of pomegranate juice and peel water extract on heamatological Parameters:

Data concerning the effect of orally intake pomegranate juice and peel water extract on the hematological parameters are shown in Table (9). There was significant increment in WBC in diabetic group. While, hypercholesterolemia group showed significant increment in WBC and RBC in the group administrated with pomegranate juice.

The obtained results are in agreement with **Bhandary** *et al.* (2013).

Table 8. Effect of orally intake pomegran	ate juice and peel water	extract on kidney functi	ons.
Groups	Urea mg/dl	Uric acid mg/dl	Creatinine mg/dl
Control Basal diet	$50.97 fg \pm 3.75$	$2.81 \text{de} \pm 0.15$	$0.28 \text{cd} \pm 0.10$
Basal diet +	$39.82h \pm 1.40$	$2.35 \text{ef} \pm 0.34$	$0.15 hi \pm 0.07$
Pomegranate juice			
Basal diet +	$40.18h \pm 2.80$	$3.20d \pm 0.12$	$0.13i \pm 0.04$
Pomegranate peel extract			
Diabetic control group + Basal diet	$80.61a \pm 6.11$	$4.64ab\pm0.39$	$o.37b\pm\ 0.12$
Diabetic +Basal diet +	$54.83 \text{ef} \pm 2.80$	$3.914c \pm 0.18$	$0.24df \pm 0.11$
pomegranate juice			
Diabetic + Basal diet +	58.6de ± 1.90	$3.82c \pm 0.29$	$0.252 df \pm 0.03$
pomegranate			
peel extract			
Hypercholesterolemia control group +	$83.63a \pm 5.50$	$5.05a\pm\ 0.23$	$0.528a\pm\ 0.18$
Basal diet			
Hypercholesterolemia + Basal diet +	$58.5 de \pm 0.97$	$4.00c \pm 0.16$	$0.318bc \pm 0.11$
Pomegranate juice			
Hypercholesterolemia + Basal diet + Pomegranate peel extract	$46.23 gh \pm 1.00$	$4.28bc \pm 0.30$	$0.27 ce \pm 0.04$

Table 8. Effect of orally intake pomegranate juice and peel water extract on kidney functions.

a,b,c,....i means within column with different letters different significantly ($p \le 0.05$) from each other means followed by the same letter don't differ at 0.05 probability level.

Each value represent the mean of 5 rats \pm S.E.

Table 9. Effect of orally intake of pomegranate juice and peel water extract on hematological Parameters.

Choung	RBC	WBC	Hb
Groups	(X10 ⁶ /µl)	(X10³/µl)	(g/dl)
Control Basal diet	6.70ab	15.78eg	14.34ac
	± 0.31	± 2.3	± 0.61
Basal diet +	6.92ab	19.90b	14.00b
Pomegranate juice	± 0.23	± 2.07	± 0.7
Basal diet +	7.02ab	19.04b	14.6ab
Pomegranate peel extract	± 0.24	± 3.11	± 0.45
Diabetic control group + Basal diet	6.54ac	14.6g	13.34df
	±0.39	± 2.4	± 1.36
Diabetic +Basal diet +	6.77ab	16.06ef	13.54cf
pomegranate juice	± 0.61	± 2.54	± 1.44
Diabetic + Basal diet + pomegranate	6.75ab	21.36a	13.46cf
peel extract	± 0.08	± 3.35	± 0.45
Hypercholesterolemia control group +	5.76c	17.60cd	12.86ef
Basal diet	± 0.55	± 1.64	± 0.06
Hypercholesterolemia + Basal diet +	6.95ab	18.98b	13.46cf
Pomegranate juice	± 0.31	± 2.11	± 0.45
Hypercholesterolemia + Basal diet +	6.71ac	18.71bc	13.66be
Pomegranate peel extract	± 0.16	± 2.00	± 0.37

a,b,c,..f means within column with different letters differ significant ($p \le 0.05$) from each other means followed by the same letter don't differ at 0.05 probability level.

Each value represent the mean of 5 rats \pm S.E.

References

- **A.O.A.C.** (2005).Official Methods of Analysis of the Association of Official Agricultural Chemists, 17th ed, published by A.O.A.C.
- Abdel Moneim, A. E., Dkhil, M. A. and Al-Quraishy, S.(2011). Studies on the effect of

pomegranate (*Punica granatum*) juice and peel on liver and kidney

in adult male rats. Journal of Medicinal Plants Research. 5(20):5083-5088.

Abdel-Rahim, E.A.; El-Beltagi H.S. and Romela R.M. (2013). White Bean seeds and Pomegranate peel and fruit seeds as hypercholesterolemic and hypolipidemic agents in albino rats. Grasas Y Aceites, 64 (1):50-58.

- AlFadel, F., Al Laham,S., and Alkhatib,R.,(2014).The Anti-Bacterial activity of various parts of *Punica granatum* on antibiotic resistance *Escherichia coil* International Journal of Pharmacognosy and Phytochemical Research 6(1): 79-85
- Al-Rawahi, A. S.; Rahman, M. S.; Guizani, N. and Essa, M, M. (2013). Chemical Composition, Water Sorption Isotherm, and Phenolic Contents in Fresh and Dried Pomegranate Peels. Drying Technology, 31: 257–263.
- Allain, C.C.; Poon, L.S.; Chan, C.S. and Richmond, W. (1974). Enzymatic determination of total serum cholesterol. Clin. Chem., 20: 470-475.
- Al-Zoreky NS.(2009) . Antimicrobial activity of pomegranate (*Punica granatum L.*) fruit peels. Int J Food Microbiol, 134:244-248 .
- Bagri, P.; Ali, M.; Aeri, V.; Bhowmik, M. and Sultana, S. (2009). Antidiabetic effect of *Punica granatum* flowers: effect of hyperlipidemia, pancreatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes. Food Chem. Toxicol. 47(1):50-54.
- Bhandary, B. S.K.; Sharmila, Kumari, K.P N. S. and Vadisha S. (2013). Acute and subacute toxicity study of the ethanol extracts of *punica* granatum (Linn). whole fruit and seeds and synthetic ellagic acid in swiss albino mice. Asian J. Pharm. Clin. Res. 6(4): 192-198.
- Buko V, Luklvskaya O, Nkitin V, Tarasov Y, Zavodink L, Borodassky A,
- **Cioren T, Shetein B, Tanz B, Mudermann KJ** (1996). Hepatic and pancreatic effects of polyenoyl phatidyl choline in rats with alloxan induce diabetes. Cell Biochem. Furnet. 14(2):137.
- **Çam, M. and Hışıl, Y. (2010).** Pressurised water extraction of polyphenols from pomegranate peels. Food Chem. 123(3):878-885.
- **Çam, M. ,Hışıl, Y and Durmaz, G. (2009).** Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chem. 112(3):721–726.
- Cheung, L.M.; Cheung, P.C.K. and Ooi, V.C.E. (2000). Antioxidant activity and total phenolics of edible mushroom extracts. Food Chemistry 81: 249–255.
- Dahham, S.S.; Ali, M.N.; Tabassum, H. and Khan, M. (2010). Studies on Antibacterial and Antifungal Activity of Pomegranate (*Punica* granatum L.). American-Eurasian J. Agric. & Environ. Sci., 9 (3): 273-281.
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P. and Vidal, N.

(2006). Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 97(4):654-660.

- Dubois, M.; Smith, F.; Gilles, K.A.; Hammilton, J.K. and Robers, P.A. (1956): Colorimetric method to determination of sugars and related substances. Anal. Chem. 28 (3): 350-356.
- Elfalleh, W.; Nasri, N.; Marzougui, N.; Thabti, I.; M'rabet, A.; Yahya, Y.; Lachiheb, B.; Guasmi, F. and Ferchichi, A. (2009). Physico-chemical properties and DPPH-ABTS scavenging activity of some local pomegranate (*Punica granatum*) ecotypes. Int. J. Food Sci. Nutr. 60(2):197-210.
- Elfalleh, W.; Tlili, N.; Nasri, N.; Yahia, Y.; Hannachi, H.; Chaira, N.; Ying, M. and Ferchichi, A. (2011). Antioxidant Capacities of Phenolic Compounds and Tocopherols from Tunisian Pomegranate (*Punica granatum*) Fruits. J. Food Sci. 76:707-713.

Fawole, O. A, Makunga, N,P and Opara. U.L (2013). Antibacterial, antioxidanttyrosinase-inhibitionfruitpeelmethanolicextract.BMCComplementaryandAlternativeMedicine.12:200-211.

- Fossati, P. and Principe, L. (1982). Enzymatic colorimetric method to determination triglycerides. Clin. Chem., 28: 2077.
- Hadrich, F.; Cher, S.; Gargouri, Y.T. and Adel, S. (2014). Antioxidant and lipase inhibitory activities and essential oil composition of pomegranate peel extracts. J. Oleo. Sci. 63(5):515-25.
- Hajoori, M., Naik, M., Naik, K. and Desai. S. (2014). Evaluation of antimicrobial activity of *punica granatum* peel extracts using different solvent sestem. International Journal of Pharmacologycal. 4, 26-31.
- Hohnov, B.; Štavikov,L. and Karasek, P. (2008). Determination of anthocyanins in red Grape Skin by Pressurised Fluid Extraction and HPLC. Czech J. Food Sci. 26: S39–S42.
- Iddamaldeniya, S.S., Thaberw, M.I., Wickramasingghel, S.M.D., Ratnatunge, N. N. and Thammitiyagodage, M.G., (2006). A investigation of the long-term antihepatocarcinogenic potential of an indigenous comprised medicine of niglla sativa, Hemidesmus indicine and Smilax glabra. J. of Carcinogenesis5:11-24.
- **Jin, D. and Russell, J.M. (2010).** Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules; 15:7313-7352.
- Khan, J.A. and Hanee, S. (2011). Antibacterial properties of *punica granatum* peels. International Journal of Applied Bacteriology and Pharmaceutical Technology 2(3): 23-27.
- Madrigal-Carballo, S., Rodriguez, G. Krueger, C. Dre- her, M., and Reed, J. (2009).

"Pomegranate (*Punica granatum*) Supplements: Authenticity, Antioxidant and Polyphenols Com- position". *Journal of Functional Foods* 1(3): 324-329.

- Moure, A.; Franco, D.; Sineiro, J.; Domi'nguez, H.; Nu'n' ez, M.J.; Lema, J.M. (2000). Evaluation of extracts from Gevuinaavellana hulls as antioxidants. Journal of Agricultural and Food Chemistry 48: 3890–3897.
- Noda, Y.; Kaneyuki, T.; Mori, A. and Packer, L. (2002). Antioxidant activities of pomegranate fruit extract and its anthocyanidins: delphinidin, cyanidin, and pelargonidin. J. Agric. Food Chem. 50(1):166–171.
- Okonogi, S.; Duangrat, C.; Anuchpreeda, S.; Tachakittirungrod, S. and Chowwanapoonpohn, S. (2007). Comparison of antioxidant capacities and cytotoxicities of certain fruit peels. Food Chem. 103(3):839-846.
- Orak, H.H.; Demirci, A.Ş. and Gümüş, T. (2011) Antibacterial and antifungal activity of pomegranate (*Punica granatum cv.*) peel. Electronic Journal of Environmental Agricultural and Food Chemistry 10(3): 1958-1969.
- Orak, H.H.; Yagar, H. and Isbilir, S.S. (2012). Comparison of antioxidant activities of juice, peel, and seed of pomegranate (*Punica* granatum L.) and inter-relationships with total phenolic, Tannin, anthocyanin, and flavonoid contents. Food Science and Biotechnology 21(2): 373-387.
- Osman, H.F.; Eshak, M.G.; El-Sherbiny, E.M. and Bayoumi, M.M. (2012). Biochemical and Genetical Evaluation of Pomegranate Impact on *Diabetes Mellitus* Induced by Alloxan in Female Rats. Life Science Journal 9(3): 1543-1553.
- **Perez, C., and Anesini, C., (1994).** In vitro antibacterial activity of Argentine folk medicinal plants against Salmonella typhi.J Ethnopharmacol, 44:41-46.
- Radhika, S.; Smila, K.H. and Muthezhilan, R. (2011). Antidiabetic and hypolipidemic Activity of *Punica granatum Linn* on Alloxan Induced Rats. World Journal of Medical Sciences 6 (4): 178-182.
- Ramadan, Afaf-haniem, El-badrawey, S., Abd el-ghany, M., and Nagib, R.M. (2010) Utilization of hydro-alcoholic extracts for peel and rind and juice of pomegranate as natural antioxidants in cotton seed oil. The 5thArab and 2nd International Annual Scientific Conference
- Reeves, P.G; Nilsen,F.H. and Fahey, G.C.(1993):AIN-93purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76Arodent diet. J.Nut., 123, 1939-1951.

- Rowayshed, G.;Salama, A.; Abul-Fadl, M.;Akila-Hamza, S. and Emad, A. M. (2013). Nutritional and Chemical Evaluation for Pomegranate (*Punica granatum L.*) Fruit Peel and Seeds Powders By Products. Middle East Journal of Applied Sciences, 3(4): 169-179.
- SAS.,(1996) SAS procedure Guide.(Version 6.12 Ed). SAS Insitute Inc., Cary, NC,USA.
- Shaokat, S.S., Hameed , H. A. and Mohammad, H. J. (2007). Anti-fungal activity of *punica* granatum peels powder and extracts from pathogenic samples. Iraqi J.Pharm.Sci., 16 (2):12-20.
- **Tietz, N.W,(1976a).** Fundamentals of Clinical Chemistery W.B.Saunders co.,Philadelphia.p.243.
- Tietz, N.W,(1976b). Fundamentals of Clinical Chemistery W.B.Saunders co.,Philadelphia.p.999-1002.
- **Tietz., N.W. (1986).** Textbook of clinical chemistry. WBsaunders, Philadelphia, pp1271-1281.
- **Tietz, N.W. (1990).** Clinical guide to laboratory tests. 2 nd ED. Philadelphia: WB Saunders.566.
- TM, R.; Rababah, B.F.; Ereifej, A. and Yang, W.K. (2010). Optimization of extraction conditions of total phenolics, antioxidant activities, and anthocyanin of oregano, thyme, terebinth, and pomegranate. J Food Sci. 75(7): C626-632.
- **Trinder, P. (1969).** Determination of Glucose in blood using glucose-oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. 6: 24-27.
- Vassault, A.; Grafmeyer, D.; Naudin, C.; Dumont, G.; Bailly, M. and Henny J. (1986). Protocole de validation de techniques. Ann. Biol. Clin. 44: 686-745.
- Walters, M.I. and Gerarde, H.W. (1970). An ultramicromethod for the determination of conjugated and total bilirubin in serum or plasma. Microchemical Journal 15(2): 231–243.
- Wang, Z .; Pan, Z .; Mal , H. and Atungulu , G.G. (2011). Extract of phenolics from pomegranate peels. The Open Food Science Journal 5: 17-25.
- Wissam, Z.; Ghada, B.; Wassim, A. and Warid, K. (2012). Effective extraction of polyphenols and proanthocyanidins from pomegranate's peel. Int. J. Pharm. Sci. 4(3): 675-682.
- Young, D.S.; Thomas, D.W.; Friedman, R.B. and Pestaner, L.C. (1972). Effects of drugs on clinical laboratory tests. Clinical Chemistry 18(1) 1041-1303.
- Young, D.S.; Pestaner, L.C. and Gibberman, V. (1975). Effect of drugs on clinical laboratory tests. Clinical Chemistry, 21:1D-432D.

الملخص

تهدف هذه الدراسة إلي دراسة أفضل طريقه لاستخلاص البولي فينول و التانينات و الانثوسيانين و الفلافونويدات ومضادات الأكسدة من قشور الرمان و قد تم استخدام الماء و الميثانول والايثانول علي درجات حرارة 25م لمده 24ساعة و50م لمده 20 دقيقه وكذلك الاستخلاص بجهاز سوكسلت و الغليان لمده 5و 10و20 دقيقه . أيضا تم دراسة تأثير هذه المستخلصات و عصير الرمان كمضاد للميكروبات وقد تم استخدام بعض الميكروبات الموجبة لجرام مثل

(Staphylococcus aureus, Listeria monocytogenese, Bacillus megaterium and Bacillus cereus) والسالبة لجرام مثل

(Escherichia coli, Klebsiella pneumonia and Salmonella typi)

والفطريات مثل (Aspergillus niger and Candida albicans) كما تم دراسة تأثير عصير الرمان والمستخلص المائي للقشور علي ا الفئران المصابة بارتفاع سكر الدم و الفئران التي تعانى من ارتفاع نسه الكوليستيرول .

أوضحت النتائج أن المستخلص المائي علي درجه حرارة 50 ما علي كفاءه في استخلاص البولي فينول و التانينات و الانثوسيانين و الفلافونويدات بينما كان الميثانول اعلى كفاءه في استخلاص مضادات الأكسدة.

أظهرت جميع المستخلصات تأثير مضاد لجميع الميكروبات موضع الدراسة .

حدث انخفاض في سكر الدم والجلسريدات الثلاثية و الكوليستيرول منخفض الكثافة و اليوريا و حمض اليوريك و الكرياتينين بينما حدث ارتفاع في الكوليستيرول عالي الكثافة في الفئران المصابة بارتفاع سكر الدم و الفئران التي تعاني من ارتفاع نسبه الكوليستيرول. أيضا حدث زيادة في عدد كرات الدم البيضاء في الفئران المصابة بارتفاع سكر الدم.