Effect of some biofertilizers (pgpr, biosoal and compost tea)on growth, yield, fiber quality and yarn properties of *egyptian cotton*.(promising hybrid 10229xg86).

Zewail, R. M. Y.and Ahmed, H. S.A.^{*} Agric. Botany Department, Faculty of Agric., Benha Univ. Egypt. ^{*}Cotton Research Institute, Agricultural Research Center, Giza, Egypt.

Abstract

Experiments of this study were conducted at the Faculty of Agriculture, Moshtohor, Benha University Fiber and yarrn properties were conducted at cotton research institute, Agric. Res. Center, Giza Egypt during 2013 and 2014 seasons The effect of applying biofertilizers with the recommended rates as soil addition With the plant growth promoting Rizobactria(PGPR) and Biosoal as well as foliar spray with PGPR, biosoal and compost tea. were studied Also, the combinations of PGPR+ biosoal; PGPR+ compost tea and PGPR + biosoal+ compost tea. Different applied treatments were added through plant growth at,45,65,85and 105 days after sowingduring 2013 and 2014 seasons. At 125 days after sowing i.e., 20 days after the last addition and /or spray vegetative growth, yield, chemical analysis, some yield components and fiber& yarn properties were estimated. The most important results can be summarized as follows:

Different applied treatments increased growth characteristics i.e., plant height, number and total area of leaves/ plant, number of vegetative and fruiting branches/plant and total chlorophyll during bothgrowing seasons. The most effective treatments upon growth characteristics were the combination of PGPR+ Biosoal+Compost Tea. Also, yield and yield components i.e. bolls weight/plant, seed cotton yield (g) /plant and (kantar)/ feedan, lint weight(g) /plant, lint % and seed yield index as well.In addition,the treatment of mixed bacteria strains when applied in form of foliar spray PGPR+Biosoal +compost tea increased mineral nutrients i.e.N, P, K,Ca, Mg, Fe, Zn and Cu contents in Egyptian cotton leaf at 125 days after sowing during 2013 &2014 seasons. Furthermore, fiber physical and mechanical properties of yarn under different applied treatments were increased.

Keywords: Egyptian cotton promising 10229G 86,PGPR ,Biosoal, compost tea,seed cotton yield, fiber properties.

Introduction

Egyptian cotton (Gossypium barbadense L.) is the most important commercial fiber crop in Egypt. Cotton still plays a key role in the economic activity. It is the oldest among the commercial crops and is termed as white gold. Plant growth enhancement was used to improve lint yield, fiber quality and yarn properties. Previously, the common means to achieve these aims were through the use of desirable genetics in the form of well-adapted high-yielding varieties. Also, plant growth substances either endogenously were stimulated to form by cotton plants through many treatments or even exogenously were applied (Maheshwari et al., 2012). That are applied directly to a target plant to alter its physiological processes or its structure to improve quality, increase yields, or facilitate harvesting control, prevent undesirable late vegetative growth of plants, and enhancing fruiting could be achieved. They like promoters, inhibitors in which play a key role in control mechanism of plant growth.

Nowadays, some bacterial genera as well as many other biofertilizers are being applied to many plants to alter their physiologically and anatomically behaviors to get vigorous growth and enhance fruiting as well vital components of soils. They are involved in various biotic activities of the soil ecosystem to make it dynamic for nutrient turnover and sustainable for crop production (Chandler et al.,2008 and Ahemad and Khan,2011 and 2012). They stimulate plant growth through mobilizing nutrients in soils, producing numerous plant growth regulators, protecting plants from phytopathogens by controlling or inhibiting them, improving soil structure and bio remediating the polluted soils by sequestering toxic heavy metal species and degrading xenobiotic compounds (like pesticides) (Braudet al., 2009 Hayat et al., 2010; Rajkumar et al., 2010; Ahemad and Malik, 2009and Ahemad, 2010). Indeed, the bacteria lodging around/in the plant roots (rhizobacteria) are more versatile in transforming, mobilizing the nutrients compared to those from bulk soils (Hayat et al., 2010). Therefore, the rhizobacteria are the dominant deriving forces in recycling the soil nutrients and consequently, they are crucial for soil fertility (Glick, 2012). Currently, the biological approaches for improving crop production are gaining strong status among agronomists, botanists and environmentalists following integrated plant nutrient management system.

Plant growth promoting Rizobactria (PGPR) in Egyptian agriculture has become more apparent since the completion of the high Dam, which resulted in the deposition of the suspended Nile silt upstream from the formed lake. This Nile silt was a source of K-bearing mineral that enriched the soils during the growth of seasonal foods.Deficiencies can limit the accumulation of crop biomass. This has been attributed to a reduction in the partitioning of assimilates (Glick, 2012)In this respect.Biofertilizers are of the most important organic fertilizers in this respect, Ambergerig (1993) defined the biofertilizers as inoculation with several soil bacteria and fungi notably the species of Pseudomonas, Bacillus, Penicillium and Aspergillus those are being secrete organic acids and lower the pH which facilitate the solubility of minerals in the soil. Also, he added that Pseudomonas spp. are receiving worldwide attention under the broad general category known as plant growth promoting rhizobacteria (PGPR) or plant health promoting rhizobacteria. In addition, Patten, and Glick, and Etesami et al., (2009) explained that PGPR strains, able to augment the plants by the concentration of known interfering phytohormones that those bacteria one of the most important way affect the growth and development is by producing Indole-3 acitic acid (IAA) that led to root growth and development and improve subsequently increase uptake of nutrients. increased the yield potential and fiber properties of the Egyptian cotton .Similar results were obtained by Dhale et al., (2011) who found that the use of bioinoculents are beneficial in improving yield parameters (weight of bolls, number of bolls per plant, seed cotton yield) and fiber quality parameters (span length, uniformity ratio, micronaire value, tenacity, EIG%,)up to some extent.

Biosoal is mixed of multi strains of biofertilizer Bactria to increase plant growth and productivity by increase mineral uptake, growth promoting creation in rhizosphere and in extract thereby, increase plant integrity, as well.

Furthermore, Compost tea water based extracts of compost (compost tea) has a relatively long history in agriculture. This is not surprising since they are simple to make by soaking compost in water and agitating by stirring, aeration or other methods. Scientific investigations of claims of the benefits of compost tea are much more recent. Study results have been variable, but there is considerable evidence that compost extracts can improve plant production by decreasing disease incidence, improving plant nutrient status and generally promoting plant growth (Arancon et al., 2007; Hargreaves et al., 2008; Ingham, 2005). These water extractable components include: active microorganisms, primarily bacteria, fungi and some protozoa, mineral nutrients, organic acids and other microbial bio products. So, considerable variability in the efficacy of compost tea to promote plant growth has been reported by Al-Kahal et al., (2009).

Generally, this study aimed to determine the effect of PGPR, biosoal and compost tea as soil addition or foliar sprayed on vegetative and reproductive growths and balanced between them to attain efficient cotton productivity, maximize yield traits and to get high quality of fiber properties of Egyptian cotton promising hybrid 10229*G86

Material and methods

These experiments were conducted at the Agriculture Experimental farm at Faculty of Agriculture, Moshtohor, Benha University Egypt and fiber and yarn properties were conducted atCotton Research InstituteAgriculture Research Center Giza Egypt during 2013 and 2014 seasons to study the effect of soil addition and foliar spray with some bacterial strains as biofertilizer PGPR and biosoal as soil addition and foliar spray with and compost tea; PGPR and biosoal as well as some of their combinations on growth, vield, chemical composition, some yield components and fiber & yarn properties of Egyptian cotton promising hybrid 10229*G86.

Biofertilizers treatments were conducted in Randomize complete block design (RCBD in 5 rows) in plot $3x3.5 \text{ m}^2$ during) in three replicates two seasons.

Experiments were included two methods of application:

A-Soil addition:

At sowing time seeds were inoculated with each of Plant Growth Promoting Rizobactria (PGPR) and biosoal that were repeated through plant growth four times at 45,65,85 and 105 days after sowing with the irrigation water.

B-Foliar spray: At the assigned time of foliar spray that started at45 days /after sowing; plants were sprayed until the run of spraying solutions and repeated with interval of 20 days) (the last spray was at 105 days after sowing) with each of the following extracts:

1- Plant Growth Promoting Rizobactria (PGPR) .2- Biosoal. 3- Compost Tea. 4 PGPR + biosoal 5-PGPR + compost tea.6-Biosoal + compost tea.

7- PGPR + Biosoal + compost tea.

C-Control (without inoculation are foliar spray).

Different soil addition and foliar spray added in the recommended rates.

PGPR inoculant (soil addition) :Mixed cultures of pink pigment facultative methyl trophic bacteria mainly, It was applied as foliar application at rat of 5L fed -1 after 5 week from sowing . PPFM .F (Bacteria were kindly provide from Methylobacterium mesophilicum).and PPFM.C.

Preparation of PGPR (foliar spray): Plant Growth Promoting Rhizobacteria Pseudomonas sp. PGPR used in the present study is a commercial multi strains of Pseudomonas putida, Bacillus megatherium, Azospirillum brasilense produced by culture collection of Agric. Microbiology Dept. , ARC, Giza, Egypt. PGPR concentration was adjusted to 1×10^{-8} (cfu/gr) for all treatments and sprayed in the recommended times of cotton fertilization. **Biosoal:** was applied as a natural extract of multi Bacterial strain in two forms (soil adding and /or foliar spray)

Compost Tea: Compost tea is a liquid extract made by steeping compost in water using a variety of preparation methods (Ingham 2005)made brews when prepared by suspending a bag of compost in a container of water for up to 14 days to extract nutrients responsible to promotes integrity and vitality of treated plants. This type of brewing practice is called "passive" or Nonaerated Compost Tea and has been practiced for centuries. More recently, compost tea has been brewed in largescale mechanized systems for shorter periods of time and often supplemented with oxygen, nutrients, and microbial starter cultures to enhance the biological activity of the tea (Ingham, 2005, Naidu 2010)et al. This type of brewing technique is referred to as Aerated Compost Tea (ACT).ACT, has become more popular than nonaerated Compost tea, as an alternative to chemical fertilizers, pesticides and fungicides. It is used by organic farming communities, golf course managers,municipalities, and park and recreation facilities as part of an integrated pest management (IPM)practice. Benefits of ACT such as arising soil fertility, maximizing plant integrity and diseases suppression are reported by some users and advertised by the manufacturers of compost tea **Al-Kahalet al.**, (2009).

Management through plant growth:

During the timed of the experiments different biofertilizer treatments were add as soil addition at seed sowing in 1^{st} of May during both seasons 45,65, 85and 105 (soil addition and/ or foliar spray) days after sowing during two seasons. In addition, different agriculture managements (fertilizers, irrigation, pests control) were done according the recommended during 2013 and 2014 seasons.

Table 1. Physical and chemical properties of the experimental soil Agric. farm, Faculty of Agriculture, Moshtohor during 2013 and 2014 seasons.

properties	Se	asons
	2013	2014
Particl	e size distribution (mechanical ana	lysis)
Course sand %	7.21	6.54
Find sand %	25.92	26.62
Silt %	12.86	13.62
Clay %	51.98	53.22
Texture grade	Clay	Clay
-	Chemical analysis	
E.C.	2.15	2.18
рН (1:2.5)	8.10	8.08
CaCo ₃ %	3.45	3.02
O.M %	2.13	2.20
N % (total)	0.165	0.165
N(ppm) (available)	51.05	52.63
P % (total)	0.116	0.118
P(ppm) (available)	19.4	20.81
K % (total)	0.65	0.63
K(ppm) (available)	937.75	996.35
Soluble captions a	and anions (ppm)	
Ca ⁺⁺	185.6	192.6
\mathbf{Mg}^{++}	40.06	41.83
K ⁺	42.64	41.81
Na^+	191.42	191.25
Cl	222.83	252.26
Co ₃	0.00	0.00
H Co ₃	344.28	365.37
So ₄	491.96	461.12

Sampling and collecting data:-

1-Growth characteristics: at 125 days of plant age i.e., 20 days after the last soil addition as well as the last foliar spray; ten plants randomly were taken from different treatments to count or measure each of Plant height cm, number of vegetative branches, total leaf area cm²/plant and number of fruiting.

2-Yield and yield componentsAll Institute, At harvest (i.e., 180 days after sowing) samples of ten plants from the inner ridges of each subplot were randomly taken to determine the following yield attributes:Boll weight (g), lint percentage, seed index (100 seeds weight (g)) and seed cotton yield g/plant and Kentar (157.5 kg)/fed.).

*Fiber properties: Micronaire value, fiber maturity ratio (MR), upper half mean (UHM)mm, fiber uniformity index (UI), fiber reflected percent or brightness (Rd)%, yellowness degree (+b), fiber strength (g/tex) and fiber elongation percentage were determined using HVI instrument system according to (ASTM:D4605 1986).All properties were measured under standard conditions of (65 \pm 5%) relative humidity and (20 \pm 2c°) room temp. The following fiber properties were measured using high volume Instrument (HVI). Fiber length parameters: Fiber length at upper half means (U.H.M) mm. - uniformity index (U.I)., Fiber **bundle tensile:** Fiber strength in gram / tex. - Fiber elongation %: the percentage of elongation, which occurs before a fiber bundle breaks., Fineness characters: Fiber fineness (Micronaire reading). Fiber fineness was expressed as micronaire instrument reading, measured by (HVI)., Color attributes values: Reflectance (Rd %) and Yellowness (+b), KEISOKKI kcf-v/ls version 1.29.3. The following fiber properties were measured Keisokki (2013)kcf-v/ls using version 1.29.3.Instrument High volume fiber Length test system and Fiber length parameters: Coefficient of variation length c.v % - Spain length at 66.7% -Spain length at 50 SL % - Uniformity Ratio UR %-Short Fiber content (S.F.C. %).

3-Yarn properties:

The R.S.S second part was spun fiber into (R.S.S) Ring spinning system 60° carded count yarns at 3.6 (T.M.) for tests of yarn properties. Skein strength was measured according to **ASTM: D-1567-78**, (1998). Neps, thick places, thin places per/100 meter and yarn evenness (C.V %) was measured by Uster tester 3according to **ASTM: D-1425-60**, (1998). yet; fiber tests were conducted at a relative humidity of $65 \pm 2\%$ and a temperature of $21 \pm 2^{\circ}$ C. **4- Chemical analysis:**

Samples of cotton leaves at 125 days after sowing were taken to determine, total nitrogen as described by Horneck and Miller (1998), phosphorus by Sandell (1950), potassium by Horneck and Hanson (1998). Fe, Zn and Cu described by A.O.A.C. (1990). Total carbohydrates, were determined according to Dubois *et al.*, (1956)and total chlorophyll were measured by using chlorophyll mater.(SPAD)

5- Statistical analysis

All data were statistically analyzed and the means were compared using the least significant difference Test (L.S.D.) at 5% level according to **Snedecor and Cochran (1998).**

Results and discussions

Growth characteristics:-

Data in Table (2) indicate that different applied treatments i.e., Plant Growth Promoting

Rizobactria(PGPR) and Biosoal soil addition and foliar spray of PGPR, Biosoal, Compost Tea, PGPR. +Biosoal, PGPR+ Compost Tea, and PGPR+ biosoal + Compost Tea significantly increased plant height, number of vegetative branches, total leaf area/ plant, number of fruiting branches and total chlorophyll at 125 days after sowing during 2013 and 2014 seasons. The maximum of these traits was existed with foliar spray of combination of PGPR+ Biosoal+ Compost tea in two assigned seasons.

In this respect the maximum increase existed with the most of the applied treatments in growth aspects could be mainly attributed to the biofertilizers in which they could not only to (increase the availability of nutrients to cotton plant), but also they, function as phytostimulators thereby, stimulate and improve plant growth through creation of phytohormones known for a long time. In this respect, it was reported and established that 80% of microorganisms isolated from the rhizosphere of various crops possess the ability to synthesize and release auxins as secondary metabolites (patten and Glick, 1996, spaepen and vanderleyden of en., 2011 and Glick, 2012). Application of compost tea and biosoal to the root zone can increase plant yield and root growth significantly using extraction ratios. The compost tea effect on plant growth was found to be closely related to nitrogen status of the plant to the integrity.Carotenoids content, of vegetables is being closely related to plant growth(Pant et al., 2009).Natural microorganisms that live in fertile soil can increase plant integrity and vitality by variety of mechanisms (Haas and Défago, 2005) such asdirect association with roots; breakdown and release of minerals from organic matter to increase nutrient uptake in plants; Compost is comprised of a large and diverse community of microbes, humic acids and other chemicalnutrients such as carbon & nitrogen that support soil and enhance plant growth and improve nutrient uptake by the plant. Haas, . and D. Défago (2005) and Glick, (2012)).

Chara	cteristics	Growth characteristics											
Treatments		Pla heigh		Number of leaves /plant		Total area/j cn	plant	vege brai	ber of tative iches ant	Fru bra	iber of iiting nches lant	Total chlorophyll SPAD	
		2013	2014	2013	2014	2013	2014	2013	2014	2013		2013	2014
Control		102.0	109.0	45.00	46.33	120.32	148.25	2.33	1.66	14.33	5.66	90.20	92.40
Soil	PGPR	121.0	119.2	46.66	47.33	1530.42	575.76	2.66	3.0	16.66	.6.33	95.30	100.2
addition	Biosoal	110.0	112.2	48.00	48.66	610.21	620.23	3.66	2.33	17.00	7.00	98.20	102.3
	PGPR extract	105.2	109.6	49.33	49.00	625.30	643.45	3.33	2.0	18.00	6.66	100.4	104.2
	Biosoal extract	108.5	113.6	50.66	51.33	715.23	729.84	3.00	2.33	19.66	.9.00	100.3	105.7
	Compost tea	110.4	112.3	49.00	49.33	775.32	786.00	2.66	2.00	16.00	.7.66	98.20	101.3
Foliar	PGPR Ex. + Bio Ex.	111.3	109.3	48.66	48.33	811.21	823.14	3.23	2.33	17.33	.7.00	101.2	106.1
Spray	PGPR EX.+C Tea	110.0	111.2	46.00	47.66	822.62	879.56	3.30	3.66	18.00	.7.00	98.20	102.3
	Biosoal Ex. +C.Tea	108.4	112.5	55.33	54.33	810.32	815.80	3.00	4.00	19.00	:0.66	100.21	105.3
	PGPR Ex.+Biosoal Ex. + Compost Tea	122.4	127.3	59.00	59.66	1920.30	976.82	4.00	4.66	20.66	6.33	115.30	110.2
LSD 5 %		3.23	4.20	1.1	1.36	5.15	6.3	1.023	2.147	5.35	3.78	1.23	3.32

Table 2. Effect of biofertilizers applied to the soil and /or foliar sprayed on growth characteristics of Egyptian cotton promising hybrid 10229 *G86at 125 DAS during 2013and 2014 seasons.

Yield and yield components:-

Data in Table (3) data show the effect of different applied treatments PGPR.and Biosoal as soil addition and foliar spray of PGPR, Biosoal, Compost tea, PGPR + Biosoal, PGPR + compost tea, Biosoal + Compost Tea and PGPR +Biosoal + compost tea on boll weight (g), seed cotton yield(g)/plant, seed cotton yield (kantar) /feedan, lint(g)/plant, seed index(g) /plant and lint % during 2013 and 2014 seasons. Different applied treatments significantly increased these traits during 1^{st} and 2^{nd} experimental seasons. The maximum increase obtained with using foliar spray of PGPR extract.+ Biosoal extract.+ compost tea during two experimental seasons. This increase by using PGPR+ Biosoal+ Compost tea could be attributed to those group of beneficial bacteria, as potentially useful for stimulating plant growth and increasing crop yields. That has been evolved over the past few years to where today researchers are being able to repeatedly use them successfully in field experiments. Increased growth and yields of clover Al-Kahal et al., (2009)., he reported. Commercial applications of PGPR are being tested and are frequently successful; however, a better understanding of the microbial interactions

that result in plant growth will greatly increase or arisethe success rate of field applications (Burr et al., 1984). Also, in this respect PGPR, the rootcolonizing bacteria are known to influence plant growth by various direct or indirect mechanisms. Several chemical changes in soil are associated with PGPR. Plant growth-promoting bacteria (PGPB) are reported to influence the growth, yield, and nutrient uptake by an array of mechanisms. Some bacterial strains directly regulate plant physiology by mimicking synthesis of plant hormones, whereas others increase mineral and nitrogen availability in the soil as a way to augment portioning and translocation of different photosyntheates from source to sink thereby, increase plant yield and productivity.

Table 3. Effect of biofertilizers applied to the soil and /or foliar sprayed on some yield and its components of Egyptian cotton promising hybrid 10229 *G86 at harvest time (i.e., 180 days after sowing) during 2013 and 2014 seasons.

Characteristics Treatments		Yield components												
		Boll weight (g)		Seed Cotton yield(kg) /plant		Seed Cotton Yield (Kantar.) /feddan		Lint (g) /plant		seed index (g) /plant		nt %		
		2013	2014	2013	2014	2013	2014	2013	2014	2013 201	4 2013	2014		
C	ontrol	2.53	2.50	1.62	2.02	8.15	8.53	7.55	7.75	9.17 9.3	7 35.88	33.80		
Soil	PGPR	3.07	3.11	3.24	4.50	9.33	9.65	10.29	10.06	9.91 10.1	1 36.95	35.08		
addition	Biosoal	3.13	3.18	3.67	3.62	10.15	10.25	13.72	13.59	10.05 9.9	5 37.64	36.63		
	PGPR extract	3.20	3.21	3.41	3.03	10.57	10.98	15.70	15.08	10.49 10.0	6 38.36	36.56		
	Biosoal extract	3.20	3.21	3.91	4.27	10.75	10.82	15.60	16.45	10.01 10.3	88 38.92	38.73		
	Compost tea	3.18	3.16	3.02	3.55	10.92	10.95	15.59	15.59	10.19 10.2	8 37.92	38.85		
	PGPR Ex. + Bio Ex.	3.17	3.14	3.75	3.22	10.99	11.12	14.14	15.83	10.25 10.9	3 33.87	38.80		
Foliar spray	PGPR EX.+C Tea	3.07	3.11	3.24	2.50	11.26	11.32	10.29	10.06	9.91 10.1	1 36.95	35.08		
	Biosoal Ex. +C.Tea	3.20	3.30	3.40	3.18	10.95	11.23	10.50	14.56	10.50 10.3	5 35.42	36.52		
	PGPR Ex.+Biosoal					11.89	11.96							
	Ex. + Compost Tea	3.25	5.30	5.80	4.95			16.59	17.59	10.59 10.5	58 40.92	39.85		
LSD 5 %		0.019	0.189	0.662	2.034	0.50	0.54	2.059	0.383	0.374 0.49	6 0.899	1.088		

Leaf Chemical composition:-

Data presented in Table (4) indicate that control plants (without treatments) gave the lowest N,P,K,Fe,Zn and total carbohydrate in cotton leaves at 125 days after sowing during 2013 and 2014 seasons.Meanwhile, different applied treatments significantly increased thes eelements and carbohydrates to reach their maximumwith the applied combination of PGPR+Biosoal +Compost tea during 1st and 2nd experimental seasons. This increase in different elements and carbohydrates with using this combination of biofertilizers could be attributed to those attributed the beneficial effects of these treatments on minerals uptake and increase photosynthesis in cotton leaves the bacterial community in the rhizosphere develops depending on the nature and concentrations of organic constituents of exudates, and the corresponding ability of the bacteria to utilize these as sources of energy Phosphorus (P). Also, in this respect, Iron is the second important plant growth-limiting nutrient after nitrogen, is abundantly available in soils in both organic and inorganic forms Iron is a vital nutrient for almost all forms of life. All microorganisms known hitherto, with the exception of certain lactobacilli, essentially require iron (Neilands, 1995).In the aerobic environment, iron occurs principally as Fe⁺³ and is likely toform insoluble hydroxides and oxyhydroxides, thus making it generally inaccessible to both plants and microorganisms (**Rajkumar et al., 2010**). Commonly, bacteria acquire iron by the secretion of low-molecular mass iron chelators referred to as siderophores which have high association constants for complexing iron. Most of the siderophores are water-soluble and can be divided into extracellular siderophores and intracellular siderophore

Fiber properties:-

Data in Tables (5,6 &7) indicated that different applied treatmentsi.e. PGPR and Biosoal addition in soiland foliar spray of PGPR; biosoal; compost Tea, PGPR +Biosoal; PGPR + Compost Tea; biosoal + Compost Tea and PGPR+biosoal + Compost tea significantly increasedSL2.5%, SL 50%, ML mm, UR%,SFC%, UHM m.m., UI%, SL66.7%, c.v%, +b, Rd%, Elongation%, Str. Gram/tex and Mic. for fiber properties during 2013 and 2014 seasons. The maximum increase also, was existed with using combination of foliar spray of PGPR +Biosoal+ compost tea during 1st and 2nd experimental seasons. In this respect, the obtained increase could be attributed beneficial to those effects of biostemulating microorganisms on growth and different physiological processes leading to increase photosyntheates formation by enhancing their translocation thereby; cause significantly increases in fiber properties. These bacteria, generally, improve the plant growth through direct effects on growth promoting, such as auxin and increasing the

availability and uptake of soil nutrients. This prevent the damaging effects of the highly ions accumulation. The reduction in growth rate result which, reflected on the fiber quality as mentioned earlier. Thus its logic that the best interaction for all significant charactersAl-Kahal et al., (2009) and Glick, (2012).

Table 4. Effect of biofertilizers applie	d to the soil and /or foliar sprayed on chemical composition of leaves in 1	Egyptian
cotton promising hybrid 10229 *G86	at 125days after sowing during 2013 and 2014 seasons.	
<u>Ole</u>		

Chara	cteristics						Chemic	cal com	positio	n			
		N	%	P %		К %		Fe mg/l		Zn mg/l		carboh	tal ydrates %
Treatmen	ıts	2013	2014	2013	2014	2013	2014	2013	2014	2013	2014	2013	2014
Control		2.03	2.15	0.52	0.58	1.56	1.62	220	225	124	134	15.30	16.45
Soil	PGPR	2.28	2.31	0.62	0.67	1.68	1.72	240	247	129	136	16.41	17.25
addition	Biosoal	2.45	2.55	0.65	0.71	1.75	1.79	255	262	132	142	16.48	17.36
	PGPR extract	2.35	2.42	0.71	0.74	1.83	1.86	266	273	145	152	16.52	17.69
	Biosoal extract	2.53	2.60	0.78	0.83	1.91	1.95	275	279	155	161	16.82	17.95
	Compost tea	2.75	2.80	0.81	0.86	1.95	1.98	278	287	160	169	16.90	17.99
	PGPR Ex. + Bio Ex.	2.83	2.89	0.89	0.93	1.99	2.05	282	295	172	178	17.25	18.38
Foliar spray	PGPR EX.+C Tea	2.91	2.94	0.92	0.98	2.00	2.09	289	312	179	186	17.89	18.47
	Biosoal Ex. +C.Tea PGPR	2.80	2.84	0.93	0.99	2.10	2.15	293	316	187	192	17.90	18.35
	Ex.+Biosoal Ex. + Compost Tea	3.01	3.03	1.01	1.05	2.66	2.73	310	323	196	202	18.23	19.89
LSD 5 %		0.20	0.22	0.12	0.18	0.15	0.22	0.11	0.13	0.10	0.11	0.15	0.20

Table 5. Effect of biofertilizersapplied to the soil and /or foliar sprayed on fiber properties of Egyptian cotton promising hybrid 10229 X G86 during 2013 and 2014 seasons.

Char	acteristics					Fiber pr	operties				
		SL2.5%		SL 5	SL 50%		ML mm		UR%		С%
Treatmen	Treatment s		2014	2013	2014	2013	2014	2013	2014	2013	2014
Control		34.67	35.37	16.60	16.80	30.03	29.03	47.87	45.90	4.97	3.40
Soil	PGPR	32.93	34.43	16.63	16.37	30.13	31.50	47.63	49.73	5.00	4.90
addition	Biosoal	34.63	35.73	15.90	17.37	31.03	30.40	45.90	48.23	6.63	4.73
	PGPR extract	34.93	34.63	16.37	15.90	30.90	30.13	47.30	49.07	4.73	5.00
	Biosoal extract	34.33	34.12	17.37	16.60	31.50	29.90	49.73	48.23	3.40	4.00
	Compost tea	34.83	32.93	16.80	16.63	30.40	30.23	48.23	47.30	4.90	4.97
	PGPR Ex. + Bio Ex.	35.37	34.33	17.37	16.97	31.57	29.13	49.07	49.27	4.00	6.63
Foliar	PGPR EX.+C Tea	34.43	34.33	16.97	17.07	31.43	31.50	49.27	47.73	4.00	4.11
spray	Biosoal Ex. +C.Tea	34.50	34.55	17.20	17.4	31.40	31.6	49.50	47.60	5.30	4.25
	PGPR Ex.+Biosoal Ex. + Compost Tea	35.73	34.83	17.47	17.97	32.80	31.52	49.73	49.87	6.47	6.36
LSD 5 %		0.705	0.88	1.122	1.23	1.799	1.89	2.822	2.87	2.378	2.47

Chara	acteristics					Fiber pr	operties				
Treatment	8	UHM	UHM m.m.		UI%		SL66.7%		c.v%		b
		2013	2014	2013	2014	2013	2014	2013	2014	2013	2014
Control		35.47	35.93	84.67	87.67	12.37	12.20	26.53	29.10	10.84	10.77
Soil	PGPR	35.40	35.73	85.13	85.07	12.30	13.03	26.93	22.63	10.11	9.96
addition	Biosoal	35.20	35.33	82.47	84.63	11.77	12.17	29.10	26.23	10.77	10.81
	PGPR extract	35.93	36.47	87.67	86.47	12.90	12.60	29.63	26.37	9.79	9.79
	Biosoal extract	35.33	35.40	84.63	85.13	12.20	12.37	26.37	26.53	10.26	10.23
	Compost tea	35.73	35.47	85.07	84.67	12.57	12.11	26.83	24.87	10.68	10.50
	PGPR Ex. + Bio Ex.	36.47	35.20	86.47	82.47	13.03	12.30	27.87	26.33	10.63	10.57
Foliar	PGPR EX.+C Tea	35.17	35.20	86.53	86.56	12.17	11.77	26.37	29.10	9.79	9.79
spray	Biosoal Ex. +C.Tea	36.30	36.25	86.8	85.7	12.00	12.20	29.15	29.60	10.50	10.60
	PGPR Ex.+Biosoal Ex. + Compost Tea	36.77	35.93	87.10	85.19	13.60	12.90	30.23	22.63	10.50	10.68
LSD 5 %	100	0.8128	0.823	3.612	3.71	0.907	0.923	0.325	1.455	0.23	0.32

Table 6. Effect of biofertilizers applied to the soil and /or foliar sprayed on fiber properties of Egyptian cotton promising hybrid10229 X G86 during 2013 and 2014 seasons.

Table 7. Effect of biofertilizersapplied to the soil and /or foliar sprayed on fiber properties of Egyptian cotton promising hybrid 10229 x G86 during 2013 and 2014 seasons.

Cha	racteristics	Fiber properties											
		Rd%	/o	Elongat	ion%	Str. Gr	am/tex	Mi	с.				
Treatmer	nts	2013	2014	2013	2014	2013	2014	2013	2014				
Control		55.85	56.18	8.65	7.99	28.6	29.42	4.4	4.3				
Soil	PGPR	67.91	67.99	8.82	6.99	29.42	32.41	4.5	4.2				
addition	Biosoal	67.60	67.69	6.66	7.09	32.41	27.24	4.3	4.4				
	PGPR extract	67.90	67.97	7.65	7.65	27.24	32.6	4.2	4.4				
	Biosoal extract	68.47	68.43	6.99	8.65	38.2	32.41	4.3	4.3				
	Compost tea	66.84	67.09	7.99	7.09	32.6	29.42	4.4	4.5				
Foliar	PGPR Ex. + Bio Ex.	65.80	55.26	7.09	8.82	35.22	35.22	4.5	4.3				
spray	PGPR EX.+C Tea	68.43	67.60	7.09	7.65	33.16	33.16	4.4	4.7				
	Biosoal Ex. +C.Tea	69.40	69.50	8.87	8.00	35.90	35.60	4.5	4.5				
	PGPR Ex.+Biosoal Ex. + Compost Tea	70.26	70.90	8.93	8.09	36.82	36.89	4.6	4.9				
LSD 5 %)	11.95	10.52	2.27	2.33	8.96	9.11	0.103	0.092				

Yarn properties:-

Data in Table (8) show the effect of different growth stimulating microorganisms PGPR and Biosoal as soil addition and foliar spray of PGPR ; biosoal ; compost tea; PGPR + biosoal ; PGPR + compost tea; biosoal+ compost tea; PGPR + biosoal + compost tea on yarn properties i.e.,(Skein strength, C.V.%, Thin Places, Thick Places and Neps) during 2013 and 2014 seasons. In this context different applied treatments significantly increased skein strength during the two seasons. Meanwhile, C.V.%, Thin Places, Thick Places and Neps decrease with different applied treatments during 1st and 2ndexperimental seasons. Generally, the foliar spray with PGPR +biosoal + tea compost combination or separately increased fiber and yarn properties during 1st and 2nd seasons.

In this respect, this increase could be ascribed to the increase in fiber maturity as a result of good accumulation of carbohydrates which increase the cellulosic materials (non, colored materials) and decrease the non, cellulosic materials (colored materials) as found in plants grown under deficient of growth elements i.e., control (**Pant et al., 2009**) **and Ahemad and Malik (2011).**

Table 8. Effect of biofertilizers applied to the soil and	/or foliar sprayed on fiber properties of Egyptian cotton
promising 10229 * during 2013 and 2014 seasons.	

Chara	octeristics			yarn properties									
		Skein strength		C.V.%		Thin Places		Thick Places		Neps			
Treatment s		2013	2014	2013	2014	2013	2014	2013	2014	2013	2014		
Control		2280	2387	15.63	13.00	13.00	10.33	28.00	19.33	15.33	10.33		
Soil	PGPR	2363	2395	15.00	12.60	10.33	9.00	25.33	17.33	12.33	8.67		
addition	Biosoal	2387	2462	14.73	12.33	9.00	8.00	22.67	15.67	10.33	7.67		
	PGPR extract	2395	2493	13.60	12.07	8.00	7.00	20.67	14.33	8.67	7.00		
	Biosoal extract	2493	2280	13.00	15.00	7.00	7.00	17.33	28.00	7.00	3.67		
	Compost tea	2462	2580	13.33	15.63	7.00	7.00	19.33	8.00	7.67	5.67		
	PGPR Ex. + Bio Ex.	2533	2363	12.60	14.73	7.00	13.00	15.67	25.33	5.67	15.33		
Foliar	PGPR EX.+C Tea	2580	2387	12.33	13.60	6.00	10.33	14.33	22.67	3.67	12.33		
spray	Biosoal Ex. +C.Tea	2590	2450	12.									
	PGPR Ex.+Biosoal Ex. + Compost Tea	2648	2649	12.07	13.33	3.67	9.00	8.00	20.67	2.00	10.33		
LSD 5 %		29.57	28.97	0.5413	0.534	2.515	2.613	1.714	1.700	1.920	1.937		

References

- A.O. A. C. (1990).Official Method of Analysis, 15th Ed., Association of Official Analytical Chemists, Inc., USA.
- A.S.T.M. American Standard Testing and Materials (1998). On materials.D:1578-67:D:1425-60,D:1440-65,D1445-67,D:1448-68,D:2812-95.Annu. Book of ASTM Standard.ASTM. Philadelphia, PA.
- Ahmed, H.S.A. (2010). Effect of some treatments on growth and productivity in Egyptian cotton.Phd. Dept. of Agric Botany. Fac. of Agric. Moshtohor, Benha Univ.
- Ahemad, M., and Maik.K.h. (2009). Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards Rhizobium pea symbiosis.Bull. Environ. Contam.Toxicol. 82, 761–766.
- Ahemad, M., 2010.Plant growth promoting activities of phosphate-solubilizing Enterobacterasburiae as influenced by fungicides.Eurasia. J. Biosci. 4, 88–95.
- Ahemad, M. and Khan, M.S., (2011).Assessment of plant growthpromoting activities of rhizobacterium Pseudomonas putida underinsecticide-stress.Microbiol. J. 1, 54–64.
- Ahemad, M. and Khan, M.S., (2012.Evaluation of plant growth promoting activities of rhizobacterium Pseudomonas putida under herbicide-stress. Ann. Microbiol. 62, 1531– 1540.
- Ahmed, H.S.A. (2002). Botanical studies on growth and flower abortion in cotton (*Gossypium barbadense* c.v) Plants. Msc. Dept. of Agric

Botany. Fac. of Agric. Moshtohor, Zagazig Univ. Benha branch.

- Al-Kahal, A.A.;S.M. Ahmed ; W.D. Saleh and G.A.M. El-Sayed (2009). Productivity of clover as affected by application of compost tea, Egypt.J. of applied Sci., 24 (3B) 807-817.
- Ambergerig, A. (1993). Dynamics of nutrients and reaction of fertilizers appelled on the environment.Proc. of German/ Egyptian/ Arab Workshop in Cairo and Ismailia, Egypt.6-17 June PP.41-60.
- Armon, D.I. (1949). Copper enzymes in isolated chloroplast. Plant physiol., 24:1-15.
- Arancon NQ, Edwards CA, Dick R and Dick L (2007) Vermicompost tea production and plant growth impacts.BioCycle 48 (11):51-52
- ASTM.(1986). American society for testing materials, D-4605. U.S.A.
- Attia A.N., M.S. Sultan, E.M. Said, A.M. Zina and A.E. Khalifa (2008)Effect of the first irrigation time and fertilization treatments on the growth, yield, yield component in cotton
- Braud, A., Je'ze'quel, K., Bazot, S. andLebeau, T., (2009). Enhanced phytoextraction of an agricultural Cr-, Hg- and Pb-contaminated soil by bioaugmentation with siderophoreproducing bacteria Chemosphere 74, 280–286.
- Burr TJ, Caesar AM andSchrolh N, (1984). Beneficial plant bacteria. Critical Reviews in Plant Sciences, 2 (Suppl 1): 1–20.
- Chandler, D., Davidson, G., Grant, W.P., Greaves, J. andTatchell, G.M., (2008). Microbial biopesticides for integrated crop management:an assessment of environmental

and regulatory sustainability.Trends Food Sci. Tech. 19, 275–283.

- Dhale D. A., S. N. Chatte and V. T. Jadhav(2011) Response of bioinoculents on growth, yield and fiber quality of cotton under irrigation . Agricultural and biology journal of north America. Science Huß, http://www.scihub.org/ABJNA.
- Dubios, M., K.A. Gilles, J.K. Hamilton, P.A. Rebe ns and F. Smith, (1956). "Colorimetric method for determination sugars and related substances", Anal. Chem. Soc., 46: 1662-1669.
- Etesami H., H. A. Alikhani, M. Jadidi and A. Aliakbar (2009) Effect of Superior IAA Producing Rhizobia on N, P, K Uptake by Wheat Grown under Greenhouse Condition World Applied Sciences Journal 6 (12): 1629-1633.
- Glick, B.R., (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Hindawi Publishing Corporation, Scientifica.Glick.
- Hargreaves J, Adl MS, Warman PR and Rupasinghe HPV (2008). The effects of organic amendments on mineral element uptake and fruit quality of raspberries. Plant Soil 308:213-226.
- Haas, D. and G. Défago (2005); Biological Control of Soil-Borne Pathogens by Fluorescent Pseudomonads-Nature Review Microbiology.
- Hayat, R., Ali, S., Amara, U., Khalid, R. and Ahmed, I., (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol. 60, 579–598.
- Horneck, D.A. and D. Hanson, 1998. "Determination of potassium and sodium by Flame Emission Spectrophotometry", In Handbook of Reference Methods for Plant Analysis, pp: 153-155
- Horneck, D.A. and R.O. Miller, (1998). "Determination of total nitrogen in plant tissue", In Handbook of Reference Methods for Plant Analysis, pp: 75-83..
- Ingham ER (2005) The Compost Tea Brewing Manual; Latest Methods and Research.5th edn. Soil Food Web Inc., Corvallis, OR.
- International Conference on Organic Farming (ICOF) (2010) Friendship Hall, Khartoum, Sudan 6 – 7 April 2010.
- Jackson, M.L. (1976). Soil chemical analysis.Prentice- Hall, Inc. Engle Wood Cliffs, N.J., 498 PP.
- KEISOKKI (2013) The following fiber properties were measured using Keisokkikcf-v/ls version 1.29.3.Instrument High volume fiber Length test system.kcf-v/ls version 1.29.3.

- Li F.S., Xu Y.Z. and Zhang C. (1999).Effects of nitrogen, Phosphorus and potassium on the development of cotton bolls in summer.ActaGossypiiSinica 11: 24-30.
- Maheshwari DK, Dubey RC, Aeron A, Kumar B, Kumar S, Tewari S and Arora NK (2012).
 Integrated approach for disease management a(nd growth enhancement of Sesamumindicum L. utilizing Azotobacterchroococcum TRA2 and chemical fertilizer. World J MicrobiolBiotechnol 28 (10):3015–3024.
- Mitkees, R.A.; Ajman, M. Sadek; A.M.K. Eissa and Mahmoud, S.k. (1996). Use of nitrogen biofertilizer requirements. Nile valley and Red sea Regional program, Eight, Ann. Coordination Meeting, Egypt, 15-19 Sep., 140-146.
- Muhammad I; Khezir H and Noor I (2007).Study of Pix regulator effect on physiological responses in cotton plant Asian Journal of Plant Science,6 (1), 87-92.
- Naidu, Y., S. Meon, J. Kadir and Y. Siddiqui, (2010): Microbial Starter for the Enhancement ofBiological Activity of compost tea. Int. J.Agric. Biol., 12: 51–56.
- Neilands, J.B., 1995. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270, 26723–26726.
- Pant A, Radovich TJK, Hue NV, Talcott ST, Krenek KA (2009) Vermicompost extracts influencegrowth, mineral nutrients, phytonutrients and antioxidant activity in Pak choi (Brassica rapacv.Bonsai, Chinensis group) grown under vermicompost and chemical fertilizer. J Sci Food Agric 89:2383-2392
- Patten, C.L. and Glick, B.R., (1996). Bacterial biosynthesis of indole-3-acetic acid.Can. J. Microbiol. 42, 207–220.
- Rajkumar, M., Ae, N., Prasad, M.N.V. andFreitas, H., (2010).Potential of siderophore-producing bacteria for improving heavy metal phytoextraction.Trends Biotechnol. 28, 142– 149.
- Sandell, R., (1950). "Colorimetric determination of traces of metal", 2ndEd.Interscience pub., Inc. New York..
- Spaepen, S. and Vanderleyden, J., (2011). Auxin and plant-microbe interactions. Cold Spring Harb.Perspect.Biol. http://dx.doi.org/10.1101/cshperspect.a001438

tobacco phytopathology. 61: 126-1265.

SnedecorG.W andCochranW.G.(1998). Statistical Methods. 8 th Edition, Iowa State Univ., Press, Ames, Iowa. USA.

تأثير التسميد الحيوى بالبكتريا المشجعه للنمو والبيوسول والكمبوست السائل على النمو،المحصول ومكوناته وصفات جودة التيله والغزل في الهجين المبشر 10229 *جيزة86 من القطن المصرى.

رضا محمد يوسف زويل ، حامد سيدأحمد أحمد *

قسم النبات الزراعي -كلية الزراعه - جامعة بنها *- معهد بحوث القطن مركز البحوث الزراعيه -الجيزة مصر.

الملخص العربى

أجريت تجربتان حقليتان بمحطة البحوث والتجارب بكلية الزراعه بمشتهر – جامعه بنها, وقياسات خصائص التيله بمعهد بحوث القطن مركز البحوث الزراعيه- الجيزة مصر خلال موسمى الزراعه 2013 ، 2014 لدراسة تأثير البكتريا المنشطه للنمو المضافة الى التربه ، ، البيوسول المضاف للتربه، ومعاملات الرش بالتركيزات الموصى بها من البكتريا المشجعه للنمو ، البيوسل الكمبوست السائل والتفاعل فيما بينهم البكتريا المنشطه للنمو + البيوسول، البكتريا المنشطه للنمو + البيوسول ، البكتريا المشطة للنمو + الكمبوست السائل ، البيوسول + الكمبوست السائل ، البكتريا المنشطه للنمو + البيوسول، البكتريا المنشطة للنمو + الكمبوست السائل ، البيوسول + الكمبوست السائل ، البكتريا المنشطه للنمو + البيوسول + الكمبوست السائل على النمو والمحصول وخصائص المحصول وكذلك المحتوى الكيماوى للاوراق. والتيله وخصائصها . أدت المعاملات المختلفه الى تحسين خصائص النمو المحصول وخصائص المحصول وكذلك المحتوى الكيماوى للاوراق والتيله المثريه والكلورفيل الكلى والمحتوى الكيماوى للاوراق عند 125 يوم من عمر النبات خلال موسمى الدراسه وكانت اعلى زيادة مع معاملة الرش فى وحصائصها . أدت المعاملات المختلفه الى تحسين خصائص النمو المحصول وخصائص الموسمى الدراسه وكانت اعلى زيادة مع معاملة الرش فى وحضائصها . وزن اللوز ، محصول النمو البيوسول + الكمبوست السائل خلال موسمى الدراسه.كما أدت المعاملات المختلفه الى زيادة المحصول الضرية ووزن اللوز ، محصول النبات جم، ومحصول الغدان قنطار ، دليل البذور ، التيله للنبات ونسبتها) وكانت أعلى زيادة المحصول الرش فى التقاعل بين مستخلص البكتريا المنشطه للنمو + مستخلص البيوسول + الكمبوست السائل خلال موسمى الدراسه. الرش فى التقاع بين مستخلص البكتريا المنشطه للنمو + مستخلص البيوسول + الكمبوست السائل خلال موسمى وكانت أعلى زيادة مع أستخدام معاملة الرش فى المحسول (التيله عند 2.5% ، 50% الإنتظاميهمتوسط الطول ، معامل الإنتظام، الطول عند 50% ماليالماله موسمى التوله، إنخفاض محتوى الشعيرات القصيرهمعامل الإختلاف بالميكرونير ، الألماكن السميكه والرفيعه، والعقد مع معاملة الراسه وكذلك موسمى الدراسه. وكذلك أعلى زيادة مع معاملة الرش فى التفاعل بالميكرونير ، الأماكن السميكه والرفيعه، والم وليم معزول خلال موسمى الدراسه. وكذلك أعلى زيادياه حمال الرش فى التفاعل بين مستخلص البكتريا المنشطه النمو +